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A Direct Method for the 
Shakedown Analysis of Structures 
Under Sustained and Cyclic Loads 
This paper presents a straightforward method for the direct determination of the 
steady solutions in shakedown analysis. The direct method was first proposed by 
Zarka et al. This paper simplifies this method by showing that the modified hardening 
parameter field can be directly found from the yield condition and the incremental 
residual stress. Thus, only two elastic analyses are required to obtain the shakedown 
solutions without the need of performing a full-scale analysis. The two-bar structure 
and the tube problem are solved as examples to show the feasibility and efficiency 
of this approach. 

1 Introduction 
The response of structures subjected to cyclic loads and 

temperatures is often very complicated. The structure may 
elastically shake down, or it may incur reversed plasticity or 
ratchetting. Several fundamental questions can be raised; the 
existence of a steady state is usually of first concern. We then 
need to know when the shakedown will occur and what the 
final steady stress-strain state will be. The theoretical inves
tigation of all the possible responses and the evaluation of the 
life of a comparatively complex structure can be very difficult, 
even if the creep effect is neglected in a first step analysis. The 
computer based on the finite element can help, but the nu
merical approach often turns out to be very expensive and 
cannot yield a definite and accurate answer except for a small 
number of cycles because of accumulated computational error. 
On the other hand, in practice the design is primarily based 
on the maximum possible stress and strain attainable under 
sustained and periodic loads, and thus a large amount of in
cremental inelastic calculations approaching the steady state 
is often inevitable. Note that Ainsworth (1977) has proposed 
a method to determine an upper bound on creep deformation 
based on the complete steady state, cyclic stress distributions 
of a similar structure that does not creep. Therefore, for prac
tical purposes and as a way of getting out of the difficulty 
involved in detailed shakedown analysis for answering all 
shakedown questions, the transient state of the structure can 
be regarded as of less importance, and attention can be focused 
on the final steady solutions. 

In 1978, Zarka et al. first proposed a direct method which 
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permits a straightforward evaluation of the limit state of the 
structure on the basis of the elastic solution and the first cycle 
of the elastic-plastic calculation. Zarka's method takes ad
vantage of the fact that, in the case of elastic shakedown, the 
plastic strain is constant. Whenever reversed plasticity occurs, 
however, the plastic strain varies with time and Zarka's method 
becomes complex. This paper presents a simple method for 
the direct evaluation of the steady solutions for all shakedown 
cases. The two-bar assembly and the tube problem are solved 
as examples. The feasibility and the efficiency of the approach 
are obvious as compared to the conventional incremental 
method. 

This paper concerns only kinematic hardening materials, 
since for such materials, a steady state can always be reached. 

2 Problem Formulation 
The total strain e is considered to be composed of three 

parts, the elastic strain ee, the thermal strain tT and the plastic 
strain e": 

e = f
e + f

T+tp (1) 
The elastic strain te relates to the current stress a through an 
elastic matrix D: 

te = D<r (2) 

while the plastic strain t" is assumed to obey the associated 
plastic flow law: 

df 
i"=\-

da 
(3) 

where/is the yield function, and A is an infinitesimal scalar 
factor. The creep strain is not considered here. An upper bound 
of the creep deformation can be estimated after the shakedown 
solutions are obtained using Ainsworth's method, for example. 

Suppose that the material considered follows the kinematic 
hardening rule. The yield condition is then given by a function 
in the form of 
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/(<r-«) = 0 (4) 
where a is the back stress, also called the hardening parameter, 
which indicates the current center of the yield surface. Some 
differential relations have been proposed for the determination 
of the rate ix of the back stress. In this paper, we will use the 
simplest, but rather extensively used variant 

a = Be" • (5) 

where B is a constant symmetric positive matrix. We can thus 
write 

- l . = B a. (6) 

To formulate a direct approach, Zarka et al. (1978) separated 
the stress and strain into two parts: 

[o=tre' + p 

' t = £e' + e 
(7) 

where (ael, tel) represents the purely elastic solution to the 
current boundary value problem, and (p, e) represents the 
residual stress and strain. The residual stress should be stati
cally admissible with zero applied forces, and the residual strain 
should be kinematically admissible with zero applied displace
ments. Generally, they all vary with time. 

Zarka et al. next introduced a modified hardening parameter 
a 

a = a — p. (8) 

This new tensor has no physical meaning, but with it we can 
rewrite the yield condition, Eq. (4), as 

f(ael-&) = 0 (9) 

and obtain a residual stress-strain relationship 

e = (B-l + B)p + B~1a. (10) 

Zarka's method is that, instead of solving a difficult plas
ticity problem, he tried to find an a field such that at any time 
the yield condition is satisfied. Then the residual solution (p, 
e) can be obtained by solving an elastic problem with homo
geneous equilibrium equations and boundary conditions but 
with nonhomogeneous stress-strain relationships. After that, 
the actual solution can be found, according to Eq. (7), by 
superpositions. Thus, the key point of Zarka's method is how 
to find the a field. 

In the case of elastic shakedown, the a field is constant, 
that is, it is independent of time. This fact makes Zarka's 
method rather simple. However, whenever reversed plasticity 
occurs, the a field varies with time and Zarka's method loses 
its simplicity. Another difficulty is that many a fields can be 
chosen that meet the requirement and there will be considerable 
differences in the final shakedown solution, depending on the 
choice of & fields. To single out the correct solution, Zarka 
et al. calculated the first cycle and deduced, through a complex 
procedure, the right a field. 

We now present a simple and straightforward method to 
directly derive the a field and then the shakedown solution. 

It is known that under periodic loading, the stress state will 
always shake down due to the kinematic hardening. As a result, 
when shakedown is reached, the structure considered can be 
composed of three kinds of regions: Si, S2, and S3, where St 

is the reversed plasticity zone, S2 yields only in the heating half 
cycles, and S3 yields only in the cooling half cycles (Fig. 1). 
In the stress space, it means that stresses in region Si hit the 
yield surface twice in a complete cycle, whereas stresses in 
regions S2 and S3 hit the yield surface only once and remain 
somewhere inside the yield surface during the other half cycles 
(Fig. 2). In other words, the above division says that during 
a complete cycle when the shakedown is reached, the yield 
condition will be met twice in region S^ 

Heating Half Cycles Cooling Half Cycles 

Fig. 1 Possible division of the region. Region S, incurs alternating 
plasticity; region S2 yields only during the heating; and region S3 yields 
only during the cooling. 

Fig. 2 Yield surface. Stresses in region S, hit the yield surface twice 
in a complete cycle. Stresses in regions S2 and S3 hit the yield surface 
only once and remain somewhere inside the yield surface during the 
other half cycles. 

\f(4-&c) = Q 

and will be met only once in region S2: 

and once in region S3: 

/(<4-&//)<0 

/ ( ^ - & c ) = 0. 

(11) 

(12) 

(13) 

In Eqs. (11)—(13), the subscripts H and C are used to refer to 
the values for the heating and cooling half cycles, respectively. 

Now suppose that the yield condition, Eq. (9), permits the 
solution of a in terms of the stress ad. Then from Eqs. (11)-
(13), &//and &ccan both be found in St; aHca.n be found while 
&cis unknown in S2; and &ccan be found while &wis unknown 
in S3. Since one of the modified hardening parameters is always 
known, the problem thus becomes that of finding the increment 

Aa = a c - « H . (14) 

Once the increment A& is found, the ac in S2 and &//in S3, 
and consequently the entire a field in the whole region, are 
fully determined. 

From Eq. (8), we have an incremental relation: 

A& = A a - A p (15) 

Since from Eq. (5) the back stress a depends uniquely on 
the plastic strain, whereas the regions S2 and S3 yield only once 
in a complete cycle, the plastic strain and consequently the 
back stress should be constant there. In other words, in these 
two regions, the incremental back stress Aa is zero, and the 
incremental modified hardening parameter A& equals the neg
ative incremental residual stress Ap: 

,Aa = Q 

' A& = - Ap 
in S2 and S3. (16) 
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Fig. 3 Two-bar assembly. Two bars are made of the same kinematic 
hardening material, but of different lengths (I and ijl, respectively) and 
different cross-section areas (yA and A, respectively). In addition to a 
constant axial force P, bar 2 is subjected to a temperature change of 
amplitude T, while the temperature of bar 2 always stays at zero. 

Hence, we only need to calculate the increment Ap to find the 
increment A& and then the & field. 

It should be noted that for the reversed plasticity region, Si, 
the plastic strain, and hence the back stress, vary with time so 
that the incremental back stress Aa does exist. However, for 
this region, 6tH and &c are both known and therefore the in
crement Act can be found directly. 

From Eq. (7) 
Ap = A(r-A<rel (17) 

Elastic shakedown is characterized by the fact that the incre
mental stress is elastic. Hence, in such a case, the residual stress 
p and, as a result, the modified hardening parameter a are 
independent of time and thus can directly be found from the 
yield condition. On the other hand, whenever reversed plas
ticity occurs in any part of the structure, an evaluation of the 
incremental residual stress is necessary for the determination 
of the modified hardening parameter field. 

In using this approach, the key point is that the yield con
dition should permit the solution of a in terms of elastic stress 
ael. Also, we should know the shakedown mode, and this can 
be done by performing some pre-analysis. The solution pro
cedure can best be shown by some examples. 

3 Examples 

Two-Bar Structure. Two-bar and three-bar structures have 
been studied by several authors (Zarka, et al., 1978; Megahed, 
1978; Leckie and Ranaweera, 1980; etc.) to illustrate the var
ious shakedown analysis. To begin, we will also use a two-bar 
structure to exemplify the direct method. 

The structure considered (Fig. 3) consists of two bars made 
of the same kinematic hardening material, but of different 
lengths (fand TJ£, respectively) and different cross-section areas 
(yA and A, respectively). The upper end of this system is fixed, 
and the lower end, where a constant axial force P is applied, 
can move only in one direction. In addition to the mechanical 
load, bar 2 is subjected to a temperature change of amplitude 
T, while the temperature of bar 1 always stays at zero. 

It can be found that eight different modes of behavior are 
possible for such a two-bar assembly when shakedown is 
reached. They are the purely elastic behavior—mode E, the 
elastic shakedown—modes E\ and E2, the reversed plasticity— 
modes Pu P2, ^3. and P4, and the ratchetting—mode R. The 
characteristics of these modes are shown in the following table 
and Fig. 4 gives the interaction diagram for a particular set of 

Fig. 4 Interaction diagram, two-bar assembly (k = 10, y = 0.9, >; = 
1.1). Eight different kinds of behavior are possible for a two bar as
sembly: the purely elastic behavior B, the elastic shakedowns E, and 
E2, the reversed plasticity responses P,, 

^2i ^3J 9nd P4, and ths ratchetting 
R 

Table 1 The possible responses of the two-bar assembly 

Mode 

B a r l 

Bar 2 

Heating 

Cooling 

Heating 

Cooling 

Elastic Behavior 

Yield In Tension 

Yield in Compression 

Elastic Behavior 

Yield In Tension 

Yield In Compression 

Elastic Behavior 

Yield in Tension 

Yield In Compression 

Elastic Behavior 

Yield In Tension 

Yield la Compression 

E 

X 

X 

X 

X 

E l 

X 

X 

X 

X 

E2 

X 

X 

X 

X 

P I 

X 

X 

X 

X 

P2 

X 

X 

X 

X 

P3 

X 

X 

X 

X 

P4 

X 

X 

X 

X 

R 

X 

X 

X 

X 

parameters. Note that if the transient states are considered, 
the reversed plasticity regions P2 and P4 and the ratchetting 
region R can be further divided into several subregions as 
shown by the dotted lines in Fig. 4. Since this paper concerns 
only the final shakedown solutions, we will not examine the 
transient behavior. 
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Now we will use the direct method to derive shakedown 
solutions. For convenience, the following normalized stress, 
strain, force, and temperature will be used in the forthcoming: 

stress 

E strain 

EBT 

(18) 

(19) 

where E is Young's modulus, 8 is the coefficient of thermal 
expansion, and ay is the initial yield stress. They are all con
sidered as temperature-independent material properties. 

The basic relationships for the two-bar assembly are as fol
lows. 

Equilibrium equation: 

yol + o2=p. 

Compatibility condition: 

Stress-strain relationship: 

( ei = ffi + ef 

le2 = o2 + d + e2. 

Plastic strain-back stress relationship: 

]ep2 = k a 2 

where k is a material constant. 
Yield condition: 

(20) 

(21) 

(22) 

(23) 

(24) 

Now if the stresses and strains are expressed as the sum of 
two terms as shown in Eq. (7), the residual stresses and strains 
should satisfy the following equations. 

Equilibrium equation: 

yp,+p2 = 0. 

Compatibility condition: 

ei = 7?e2-

Stress-strain relationship: 

\et= (k+l)pi + kai 

(25) 

(26) 

e2=(k+l)p2 + ka2. 
(27) 

Yield condition: 

(28) 

Based on the above governing equations, the purely elastic 
solution can be found for the heating half cycles as 

3 5 
Fig. 5 Ratchetting mode R, two-bar assembly. Bar 1 and bar 2 yield in 
tension alternatively and plastic strains build-up. The kinematic hard
ening finally stops the ratchetting and the shakedown occurs. 

l+yq °i 

el p-yqB 

°2=~n— 
1+7?/ 

and for the cooling half cycles as 
W 

I+717 
P 

1 +7T) 

(29) 

<72 = 

(30) 

and the residual stresses can be expressed in terms of the mod
ified hardening parameters as 

Ar(r)a2-ai) 
\Pv 

\P2 = 

(*+ l ) ( l + 7ij) 

ky(ri&2 -&i) 
(*+!)(!+717) 

(3D 

Therefore, once the modified hardening parameters are found, 
the residual stresses can be determined directly and the shake
down solution can be obtained by a superposition based on 
Eq. (7). 

As an example, let us first consider the ratchetting mode R. 
In this case, bar 1 yields in tension during the heating and 
remains elastic during the cooling, while bar 2 behaves elast-
ically during the heating, but yields, also in tension, during 
the cooling (Fig. 5). Since both bars yield in tension alterna
tively, the plastic strain will build up and ratchetting occurs. 
However, the kinematic hardening will finally stop the ratch
etting so that the structure will incur large but still finite de
formations when the steady state is reached. 

According to our general description, Fig. 1, there will be 
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only two regions S2 and S3 in this ratchetting mode. Since it 
is the case of elastic shakedown, the modified hardening pa
rameter a fields are constant and can be determined from the 
yield conditions, Eq. (28), directly 

ot\ =—— 1 

«2 = 

1+77/ 

P 
1+71) 

(32) 

- 1 . 

Now from Eq. (31) the residual stresses, which are also 
constant during the cycles, can be determined 

, P i = • 
k[r,d-(l-r,)tt+yr,)] 

(k+m + yr,)2 

_ky[7l6-g-r,)(l+yV)] 
Pl (k+W+yr,)2 

(33) 

and finally a superposition gives the shakedown solutions. For 
the heating, we have 

1 
ffi = 

(k+\)(\+yr,y 
{(k+l)(l + yv)vp 

+ [(k+ l)yq+ \]r)6 + k(l - J / ) ( 1 +yri)} 

(34) 

a2 = -
1 

-,( (k +\)(\ + yv)P 
(k+W+yvY 

v ~[(k+l)yri+l]yr,e-ky(\-ri)(l+yr,)] 

and for the cooling, 

(k+l)(l+yri) 

- ki)6 + k(l - ij)(l + 71))] 

(35) 

02 = 
1 

(Ar+l)(l+T^) 
-2[(k+l)(l+yV)p 

+ kyr\d -ky{\- -q){\ + 717)]. 

It is seen from the development that, in the case of elastic 
shakedown, the steady solution can be found using a very 
simple, straightforward approach. The derivation of this steady 
solution based on the conventional incremental calculation is 
considerably more complex. 

We next consider the reversed plasticity mode P2. In this 
case, bar 1 incurs reversed plasticity during the cycles, while 
bar 2 yields in tension during the cooling and remains elastic 
during the heating (Fig. 6). Referring to Fig. 1, we now have 
two regions Si and S2, and therefore, an incremental solution 
is necessary in the present situation. 

Using the yield condition, we can only find the modified 
hardening parameter for bar 1 during the heating: 

a i = -
V(p + d) 

1 (36) 
1 +yq 

while during the cooling, the modified hardening parameters 
for both bars are known: 

« i = 

«2 = 

VP 
1 + 7JJ 

p 

+ 1 

- 1 . 

(37) 

1 +yr\ 

Thus, we need to find the increment 

1, 3 

Fig. 6 Reversed plasticity mode P2, two-bar assembly. Bar 1 incurs 
reversed plasticity during the cycles, while bar 2 yields in tension during 
the cooling and remains elastic during the heating. 

A a 2 = - A p 2 (38) 

for bar 2. 
The incremental residual stresses should satisfy the equilib

rium equation 

7Api + Ap2 = 0 (39) 

and the compatibility condition 

Aei = i)Ae2 (40) 

where, by Eqs. (27) and (36)-(38), 

iAe!= (k+l)Api-k 

J Ae2 = Ap2. 

rid 

1 +71) (41) 

The solution to Eqs. (39) and (40) is 

k[ifi- 2(1 +7^)] 
, Ap! 

Ap2 = 

(k+l+yri)(l+yri) 

ky[rjd-2(l+yri)] 
(k+l+yr,Xl+yV) 

(42) 

Then, the modified hardening parameter for bar 2 during the 
heating can be found: 
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«2 = 
1 

(*+l+7ij)(l+7J?) 
{{k + \ + yi})p~ kyr)d 

- ( l+7 i? ) [*d-27) + ( l+7ij)]] , (43) 

and the residual stresses can be determined from Eq. (31). 
Finally, a superposition yields the shakedown solution: 

For the heating half cycles, 

ff' = ( ^ l ) ( ^ l 1
+ 7 . ) ( l + 7 , ) { ( A : + 1 M ( A : + 1 + 7 , ? ) P 

+ (l + vim+k[k(i -n + 2TO) + (i _ ,)(i + yV)]} 

(44) 
1 

0 2 = " ] (*+ !)[(* + l+yV)p 
(k+l)(k+l+yn)(l + yy) 

- (1 + yri)yr)d] -ky[k(l-V + 2yr,) + (1 - TJ)(1 + 71/)]) 

and for the cooling half cycles. 

. 0 i = , , _ . » , i . . „ x [ ( ^ + l ) n P - * ( l + i > ) ] 

(45) 
(*+l ) ( l+7i j ) 

1 
(72 = 

(*+l ) ( l+7i j ) 
l(k+l)p + by(l+ti)]. 

The shakedown solutions for all possible modes can be de
rived using the direct method. We will not give these solutions 
in this paper due to the space limitation. 

Tube Problem. The tube problem has received great at
tention in the literature. The ratchetting behavior was first 
analyzed for nuclear reactor pressure vessels by Miller (1959) 
and later by Edmunds and Beer (1961), Burgreen (1968), and 
Bree (1967, 1968). 

Bree studied the response of a cylindrical tube subjected to 
a sustained internal pressure and a cyclic temperature drop 
across its wall. Using a very simple one-dimensional model, 
assuming a linear temperature distribution across the tube wall 
and considering primarily an elastic-perfectly plastic material 
behavior, he studied various responses of the tube. Later, 
Mulcahy (1976) analyzed the same problem using a linear kin
ematic hardening model. Megahed (1978) adopted a bilinear 
temperature distribution and considered the effects due to cyclic 
hardening and creep. Leckie and Ranaweera (1980) reanalyzed 
this problem using a more realistic parabolic temperature dis
tribution, and a bound on the creep deformation was found. 
All of these researches, however, were based on Bree's sim
plified model. As this model is very simple, it is natural to 
doubt whether it can model the actual situation and yield 
acceptable results. 

Our previous research (Jiang, 1985) discarded all the as
sumptions and simplifications made by Bree and achieved 
closed-form shakedown solutions for all possible responses 
using the conventional incremental method. While the incre
mental method worked, the derivation turned out to be com
plex and time consuming. Now we will use the direct method 
to reanalyze this problem to illustrate the simplicity and ef
ficiency of the approach suggested. 

For convenience, some of the basic relationships are cited 
in the following. The details can be found from the previous 
research. 

Consider a long cylindrical tube that is subjected to an in
ternal pressure p, an external pressure q, a centrifugal force 
caused by the rotation of an angular velocity «, and an ar
bitrarily distributed temperature field T across the tube wall 
(Fig. 7). All the loads and temperature can be either sustained 
or cyclic in the analysis. 

Due to the symmetry, ar and cre are the only stresses, and er 

Fig. 7 Loading situation, tube problem. The tube is subjected to an 
internal pressure p, an external pressure q, a centrifugal force caused 
by the rotation of an angular velocity a, and a distributed temperature 
field T across the tube wall. 

and eg are the only strains we must deal with. For simplification, 
the loads, stresses, and strains are normalized as follows: 

P=-

G= 

EfiT 
(46) 

= tat(r) 

(47) 

(48) 

where E is Young's modulus, G is the shear modulus, j3 is the 
thermal expansion coefficient, p is the mass density, ta is the 
normalized temperature at the inner wall, t(r) characterizes 
the temperature distribution, and ry is the yield stress in shear. 

There is only one equilibrium equation, namely 

do 

dr~ 

one compatibility condition, namely 

dee
 ee~er_0 

dr r 

and two boundary conditions 
ra\r.a=-P 

- ^ + / r = 0 
r 

(49) 

(50) 

(5D 

s / H r - f t = - 6 

that need to be satisfied. For the kinematic hardening material, 
the stress-strain relationships are 

er = \[(l-2v)c-2vr]+e-ep 

, = -[(l-2v)a + 2(l-v)r]+6 + ep 

(52) 
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where ep is the normalized plastic strain: 

G 
eP = — (r-rs) m 

where 

(53) 

in which 

TS = signer) (54) 

indicates the yield direction, and m is the hardening constant. 
The yield condition is given by 

T-a = rs (55) 

where 

G 
(56) 

is the back stress or the hardening parameter. 
Now divide the stresses and strains into two parts according 

to the general procedure: 

; o=ae'+o 

T=T"'+T 

' er = ee
r' + er 

(57) 

(58) 

' + e, 

where (ael, / ' ) and (ef, eeJ) represent the purely elastic solution, 
whereas (a, T) and (er, eg) are the residual stresses and strains. 
The residual stresses should satisfy the homogeneous equilib
rium equation 

dr r 
(59) 

and the residual strains should satisfy the compatibility con
dition 

dr r 

The residual stress-strain relationships can be found as 

\-2v _ G + mv _ G „ 
I er = —-— a T a 

2 m m 

l -2 i>_ G + m(\-v)_ G „ 1 ee = — - — a H T-\— a 
2 m m 

and the yield condition, Eq. (55), becomes 
el » 

T -Ct = Ts 

where, in Eqs. (61) and (62), & is the modified hardening 
parameter 

(60) 

(61) 

(62) 

a = a — T. (63) 

Based on the above basic equations, the purely elastic so
lution can be found as 

o " = 
b'-a2 Mi-S-W'-? 

^{>-ty*-»+£;™ 

T ( 6 2 - « V 8(1 -v) 

cp-h2' 
(\-2v)r2 + 0-2v)-;r 

(64) 

+ T
s-Z(a,b) 

(b2-c^[trdr+?[ trdr 

(65) 

and the general residual solution can be found as 

C Q 
2G f a 

r + m(l-v) i r ' 

G 
(66) 

a + -G + m(\-v) P-

where C\ and C\ are constants to be determined from the 
boundary and continuity conditions. 

It is seen that if we can find the modified hardening param
eter a field, the residual stresses can be found by some inte
grations, and the shakedown solution can be obtained through 
a simple superposition. 

To illustrate the direct method, we consider a case, which 
was classified as ratchetting mode R^ in our previous research 
(Jiang, 1985). 

In the case of ratchetting mode R2, the inner tube wall yields 
and the outer tube wall remains in elasticity during the odd 
half cycles, while both walls yield during the even half cycles. 
As a result, there exists a reversed plasticity zone near the inner 
tube surface, and a ratchetting zone in some middle part of 
the tube wall (Fig. 8 (a ) ) . During the cycles, the ratchetting 
zone will gradually shrink and finally tend to zero when shake
down is attained, because of the kinematic hardening. Fig. 
8(b) shows the shakedown pattern of this mode, where three 
different kinds of regions exist: the reversed plasticity zone Si 
(a < r < c), and the elastic shakedown zones S2 (c < r < 
d) and S3 (d < r < b). 

As previously mentioned, due to the occurrence of the re
versed plasticity, the increment A& should be found in order 
to determine the a field. 

Since the stresses in region Si hit the yield surface twice 
during the cycles, the modified hardening parameter a can be 
found from the yield condition, Eq. (62), for both the heating 
and cooling, the increment Aa being known there: 

(67) Aa = ATe'+2 a<r<c 

On the other hand, the stresses in regions S2 and S3 hit the 
yield surface only once during the cycles so that we need to 
find the increment A& in these two regions to determine the 
a. field. Due to the fact that the back stress does not vary in 
the elastic shakedown zones, Eq. (63) yields 

A a = - A T c<r<b (68) 

Therefore, the problem becomes that of finding the incre
mental residual stress AT. 

The incremental residual stresses (ACT, AT) and the incre
mental residual strains (Aen Aee) should satisfy the equilibrium 
equation, Eq. (59), and the compatibility condition, Eq. (60). 
The incremental residual stress-strain relationships can be found 
from Eqs. (61), (67), and (68): 

1 
Aer = -

-2v _ G + mv _ 
-— ACT- AT-

m m 
(AT*'+2) 

_ l - 2 v _ G + m(\ 
Aea = —-— ACT + ^ A 7 + - (Are' + 2) 

m 

a-<r<c (69) 
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(a) First Cycle 

(b) Steady State 

• ^ B * - | * 

• ^ ^ * * I " 

Eq. (64), and Eqs. (68) and (71), the modified hardening pa
rameter can be obtained as follows. For the heating half cycles: 

(P-QWb2 f 

( 6 2 - a V 8(1-1-) 

r?h2 

(l-2v)r2 + Q-2v)—r 

+ -^-Z(a,b)~l a<r<d 
1 — v 

a= < (P-Q)db2 Gcp-b2 

( Z > 2 - « V + [G + m(l-v)](b2-a2)r2 

c2 , c\ f(l-2i>) /cr-a1' 
2 1 - - 5 + 2 I n - ) + ^ - f 

cr a I 8(1-v) V a 

(73) 

V. \-v 
STAa,c) 1 d<r<b. 

^^&~ 1 

For the cooling half cycles: 

- (P-Qtfb1 

(6 2 -oV 
+ 1 a<r<c 

{P-Q)ib2
 | / 

( 6 2 - « V 8 ( 1 - J - ) 

art? 
(\-2v)r2 + 0~2v)-pr 

r oc- < 

Fig. 8 Ratchetting mode R2, tube problem. A ratchetting zone exists 
in some middle part of the tube wall. The ratchetting zone gradually 
shrinks and finally disappears when the shakedown is attained as a 
result of the kinematic hardening. 

ta Gcp-b2 

+ —v
Z(a'b)~i~[G + m(l-V)](b2-a2)f ( ? 4 ) 

, c2 , c\ / ( l - 2 e ) / V - a V 
2 1--3 + 2 I n - J H - ^ T { ' 

cr a I 8 (1-?) V a 

-^ST
d(a,c) 

\—v 

(P-QWb2 _ 

L (fc2-«V 

c<r<d 

d<r<b. 

l - 2 v __ A_ 
Aer = —-— ACT - M T 

, _ 1 — 2v _ 
Aee = —-— A(r + (1 - V)AT 

c<r<b. (70) 

Based on these equations, the incremental residual stress 
AT can be determined. Assuming that the pressures are sus
tained loads, while the centrifugal force and the temperature 
are cyclic, we find 

Now the residual stresses can be found from the general 
solution, Eq. (66), and a superposition with the purely elastic 
solution finally yields the shakedown solution: For the heating 
half cycles, 

r 

Ar = 
Gcf-b2 

[G + m{\-v)](b1-cc')rl 

/ ( l - 2 e ) ((?-cr\2 ta 

c2 ' c 
2 ( 1 — j + 21n 

cr a 

8(1-1-) \ a I \-v 
Sd (a,c) 

, « - *+—Lr i2G lnM A ^ 

+ H « ! - / ; ) 4G + m(3-2v) 

c < r < 6 (71) < 

+ m(\-2v)-^ 

where 

ST
d(a,c) =-tc(l - - J j - - j j trdr. (72) 

Then, by the yield condition, Eq. (62), the elastic solution, 
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+ mtaS'(a,d) 

(75) 

1 
G + / n ( l - c ) 

v̂  

0+*+2*IzWfc_£ 

+ mtaZ
T(a,d) a<r<d 

Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a=-Q + 
1 

G + m(\-v) 

f 
8 ( 1 - , ) 

(b2-f) 

™Hv-b? 
(3-2„) + ( l - 2 , ) ^ 

\-v 
ST(b,d) 

(76) 

1 
G + m(\-v) 

G + -
R\ J{l-2v) 

8(1-e) 
r2-

r2 

+ -TL-ZT(a,d) d<r<b. 
\ — v 

For the cooling half cycles, 

1 
a=-P- G + m(l-v) 

1 

* * ; -?( ' -? 

~G + m(\-v) \ r2 

R 
(77) 

a<r<c 

r 
a= -P + 

1 

+ 

1 

G + m(\-v) 

G(\-2v\f 

ar R 
2Gln - j + -^ I 1 

a1' 

8(i-,) ^V-7?)-^87^ 
Gt„ 

G + m{\-v) 

R 0 ( 1 - 2 , ) / 

r2 8(1 fk'-y) 

o=-Q + 

Gt„ *r 
~ZT(c,d) 
l — v 

—i—- 2Gln^(l4 
G + m(\-v) \ b b2 \ r 

(78) 

c<r<d 

-—-— fc+3) 
G + mU-i - ) \ z2/ 

(79) 

d<r<b 

where 

R = ~bT^? \[G + m(.l-y)](P-Q)-2Gla^ 

/ 2 \ 2 ^r^^M™ 
and 

d2 / 2 f 
•V2 V'-J21tr 

trdr 

Z'(c,d)=-t + -

(81) 

It is seen that due to the different responses in different 
regions, the shakedown solution consists of several local so
lutions. The problem remaining is how to find the boundaries 
c and d of the different regions. Figure 8(6) shows that the 
point c is the boundary where the response of the tube changes 
from reversed plasticity to elastic shakedown, so that the in
cremental normalized shear stress at this point equals just - 2. 

On the other hand, point d borders two elastic shakedown 
zones, one yielding during the heating and the other yielding 
during the cooling, so that the shear stress remains constant 
at this point. As a result, two conditions are available for the 
determination of these two boundaries. 

(82) 

or, 
r 

2-
/ ( 1 - 2 , ) / i _ 
8(1-,) I c2 

AG 

\-v 
Zj(c,d)=0 

I 

G + m{\-v) c 

, f 

(83) 

(b2-a2) 
8 ( 1 - , ) 

G(l-2v) 

(3 -2v) + (\-2v)jg 

G + m(\-v) 
tf-c2) 1-

a2c2 

+T^hr(M)"^i^) lGSi(c,d) 

+ m(l-v)SS(a,dm=0 

where 

Zi(c,d)=-tc+td trdr (84) 

The shakedown solution, Eqs. (75)-(79), is identical to the 
one we derived using the traditional incremental method, and 
agrees very well with the experiment performed by Corum 
et al. (Jiang, 1985), which justifies the direct method we 
developed. 

4 Conclusions 

This paper presents a simple direct method for the straight
forward determination of the shakedown solutions of struc
tures subjected to various sustained and cyclic loadings. The 
advantage of the direct method is that the well-established 
theory of elasticity can be used to solve difficult plasticity 
problems which traditionally have to be attacked using com
plex, step-by-step, and time-consuming incremental analysis. 
The direct method was first proposed by Zarka, et al. The 
most important point in their framework is the introduction 
and the use of the modified hardening parameter field. How
ever, the determination of this field turned out to be very 
complex in their original work. This paper greatly simplifies 
Zarka's method by showing that the modified hardening pa
rameter field can be directly found from the yield condition 
and the incremental residual stress. Thus, only two elastic 
analyses are required in the determination of shakedown so
lutions without the need of performing a full-scale elastic-
plastic analysis. 

It can be seen that Zarka's formulation, for example, a 
residual stress-strain relationship like Eq. (10), requires a unique 
mapping between plastic stress and back stress. Thus, Zarka's 
approach is limited to linear kinematic hardening. On the other 
hand, for high-temperature problems and nonisothermal prob
lems, the back stress evolution is actually temperature and rate 
dependent, and an accurate representation of cyclic plasticity 
requires, in general, a nonlinear kinematic hardening rule. 
However, the elastic-plastic response of the structure under 
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sustained and cyclic loadings is usually very complicated, and 
consequently, any complex constitutive laws would make the 
problem intractable. Since the purpose of this research is to 
find directly the steady-state solutions to avoid the time-con
suming and expensive transient-state calculations, the linear 
kinematic hardening rule becomes an ideal one that can be 
dealt with and render at the same time satisfactory results. The 
technique developed in this paper obviously is a very useful 
one under such idealization. 

The key point of the present method is that the yield con
dition should permit the solving of the modified hardening 
parameter in terms of the purely elastic stresses. A question 
may be raised as to the conditions which would make this 
requirement possible. We have succeeded in solving several 
interesting problems using the direct method. Such general 
conditions, however, are still under investigation. We hope we 
can address this problem in the near future. 

Several examples have been given in this paper to illustrate 
the feasibility and the efficiency of the approach. It is believed 
that this version of the direct method is very promising. 
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A Theory of Plasticity for Porous 
Materials and Particle-Reinforced 
Composites 
An energy criterion is introduced to define the effective stress of the ductile matrix, 
and with which Tandon and Weng's {1988) theory of particle-reinforced plasticity 
is capable of predicting the desired plastic volume expansion under a pure hydrostatic 
tension. This modification also makes the theory suitable for application to porous 
materials at high triaxiality. Despite its simplicity, it offers a reasonable range of 
accuracy in the fully plastic state and is also versatile enough to account for the 
influence of pore shape. The theory is especially accurate when the work-hardening 
modulus of the ductile matrix is high, consistent with the concept of a linear com
parison material adopted. If the matrix is also elastically incompressible, the theory 
with spherical voids is found to coincide with Ponte Castaneda's (1991) lower bound 
for the strain potential (or upper bound in the sense of flow stress) of the Hashin-
Shtrikman (1963) type, and with any other randomly oriented spheroidal voids, it 
provides an overall stress-strain relation which lies below this upper-bound curve. 
This energy approach is finally generalized to a particle-reinforced composite where 
the inclusions can be elastically stiffer or softer than the matrix, and it is also 
demonstrated that the prediction by the new theory is always softer than Tandon 
and Weng's original one. 

1 Introduction 
In a recent paper, Tandon and Weng (1988) developed a 

simple theory of particle-reinforced plasticity under any pro
portionally increasing combined stress, where elastic spherical 
inclusions are homogeneously embedded in the ductile matrix. 
The theory makes use of a linear comparison material, whose 
elastic moduli at every instant are chosen to coincide with the 
average secant moduli of the matrix to reflect its elastoplastic 
state. Following Eshelby's (1957) equivalent-inclusion princi
ple and Mori-Tanaka's (1973) mean-field method, the com
posite is subsequently replaced by the comparison material 
filled with equivalent transformation strains. This approach 
allows one to find the average stress of the matrix in terms of 
the macroscopic stress, and then by appealing to the consti
tutive equation of the ductile phase, the overall stress-strain 
relation of the two-phase system can be easily determined. 

The advantage of adopting a linear comparison material is 
that it allows one to use the results of many well-developed 
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linear theories; although not fully nonlinear, it is analytically 
amenable and provides plausible approximation to the non
linear problems which otherwise may have to be solved nu
merically. Such an advantage has also been recognized by 
Talbolt and Willis (1985, 1987), Ponte Castaneda and Willis 
(1988), Willis (1990, 1991), and Ponte Castaneda (1991), who 
have used this idea and Hill's (1956) energy principles to con
struct various nonlinear bounds. These bounds are perhaps 
the most general and rigorous ones available to date. 

It is in part guided by the development of these bounds that 
an improved version of Tandon and Weng's (1988) theory will 
be presented here. While the original theory is reasonably ac
ceptable for a particle-strengthened solid, it is less so with 
porous materials, especially under the high triaxiality. Under 
a pure hydrostatic loading the overall response of an isotropic 
porous material would remain linear, unable to exhibit the 
expected nonlinear behavior. The reason is that the effective 
stress of the ductile matrix was calculated directly from its 
mean deviatoric stress and, therefore, under a hydrostatic ten
sion (or compression) it vanishes completely. Thus, when ap
plied to a porous material, the original theory has to be restricted 
to low triaxiality. Such a restriction is not as critical to a system 
where the elastic moduli of inclusions are stiffer than the ma
trix, as in this case the overall nonlinearity under a pure hy
drostatic loading is very small (see, for instance, Chu and 
Hashin, 1971). In any event, the inability of the original ap
proach to predict the plastic volume expansion under an iso-
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tropic tension (though possible under any other kinds of 
loading) is a rather undesirable feature of the theory and must 
be removed. 

Instead of calculating the effective stress of the matrix from 
its mean deviatoric stress, an energy approach will be proposed 
to define this quantity. This new theory is as simple and ver
satile as the original one, and yet further possesses the desired 
feature of plastic volume expansion under a pure hydrostatic 
tension. In addition, when the matrix is elastically incom
pressible, the new theory associated with spherical voids turns 
out to coincide with Ponte Castaneda's lower bound for the 
strain potential (or upper bound in the sense of flow stress) 
of the Hashin-Shtrikman (1963) type, and with any other ran
domly oriented spheroidal voids, the corresponding stress-strain 
relations always fall below this upper-bound curve. As the 
original theory, this new one is intended only for proportional 
loading under small deformation. Although in a two-phase 
composite the average stress of the ductile matrix is not strictly 
proportional, its deviation usually falls within Budiansky's 
(1959) limit (see, for instance, Zhao and Weng, 1990, for 
spherical inclusions); the deformation theory therefore will be 
used for simplicity. 

2 Constitutive Equations 
The ductile matrix will be referred to as phase 0, and the 

voids or elastic inclusions as phase 1. The elastic bulk and 
shear moduli of the rth phase will be denoted by «r and /zr, 
respectively, with a volume fraction cr. In the plastic state the 
effective stress and strain of the matrix is taken to follow the 
modified Ludwik equation 

which in turn yields 

oe = oy + h-(ep)" (1) 
where ay, h and n (0 < n < 1) are the tensile yield stress, strength 
coefficient, and work-hardening exponent, in turn, and ae and 
ep are the usual von Mises effective stress and plastic strain, 
defined as 

, e ? = \^J 

1/2 

(2) 

in terms of the deviatoric stress a[j. 
Tandon and Weng's (1988) theory takes the elastic moduli 

of the comparison material to be equal to the "secant" moduli 
of the matrix. At a given plastic state the secant Young's 
modulus is given by 

*5=i—h—' (3) 

—+-E0 <Jy + h-(ePy 
in terms of the oridinary Young's modulus E0. The secant bulk 
and shear moduli and the secant Poisson ratio follow as 

K0=K0 = 3(1-2*5)' Mo = 
Ej SJ_ 

2(1 + ^)'"° 2 xojff- (4) 

from the isotropic relation and plastic incompressibility, v0 
being the usual Poisson's ratio. The plastic state of the matrix 
is seen to be characterized by ep, or any of El, i4, and vo. 

For a 6061 aluminum these constants are (Arsenault, 1984; 
Nieh and Chellman, 1984) 
£0 = 68.3 GPa, e0 = 0.33, ay = 250 MPa, 

/2=173MPa, n = 0.455; (5) 
this set of data will be used in subsequent calculations. 

In passing we note that constitutive Eq. (1) can also be 
written in terms of the strain potential f(oe), 

" df(oe) e.p °e , l2lZl 
dae 

- = / ' ( f f e ) , (6) 

1 , n 1 
(Oe-Oy) (7) 

in the plastic state. The hydrostatic part of the potential is 
simply 1/(2KO) <4> in terms of the mean tension am (om = akk/ 
3). This description will be needed when we later discuss the 
connection between the present theory and Ponte Castaneda's 
bounds. 

3 The Overall Secant Moduli of the Porous Material 
and the Effective Stress of the Matrix 

The foundation leading from Hill's (1965) self-consistent 
scheme in polycrystal plasticity and Mori-Tanaka's (1973) 
method in composite elasticity to the development of Tandon 
and Weng's (1988) theory of particle-reinforced solids has been 
discussed in detail there and only the principal results will be 
cited. When both the composite and the comparison material 
are subjected to the same boundary traction giving rise to a 
uniform stress 5,y, the average hydrostatic and deviatoric stresses 
in the matrix are given by 

aoUi-Ko) +K0 
5Jt* = flo"**. aa = 

,/.(0). boOj'j, b0 

(Ci + C 0 a o ) ( K l - K o ) + K o ' 

flo(it*i-/4)+/4 
' (c, +Co/35) (/*i-/*o)+/4' 

where 

, 1 l + /o ~ 2(4-5,5) 
a° = 3 1- -s' ' 

(8) 

(9) 

(10) 
"b 15(1-/o) 

and «i and MI reduce to zero when specified for voids. 
The overall secant bulk and shear moduli of the composite 

are 

C i ( « i - « o ) 

Coao(Ki-K0)+Ko 

' _ , C I ( M I - / 4 ) 

Mo C0/35(MI-/"5)+M5" 

* = 1 + 
«0 

Ms 

(11) 

(12) 

In the elastic state this pair of moduli—as originally pointed 
out by Weng (1984)—coincides with Hashin and Shtrikman's 
(1963) lower (or upper) bounds if the matrix is softer (or harder) 
than the inclusions. Equation (11) implies that, even though 
the matrix is plastically incompressible, the composite as a 
whole is not. 

In Tandon and Weng's original approach, the effective stress 
of the matrix was calculated from 

jv>-
£^<vo) 

(13) 

and this is to satisfy constitutive Eq. (1), which in turn provides 
an tp

e, and Eg, MO and VQ. The overall behavior then follows 
from (11) and (12). Tandon and Weng (1988) have applied this 
theory to determine the tensile behavior of a silica/epoxy com
posite and found good agreement with the experimental data 
even up to cy =47 percent. However, if the external loading is 
purely hydrostatic, af} in (13) is zero and this approach would 
lead to no overall plastic response. 

To alleviate this problem, we recognize that von Mises' ef
fective stress essentially represents the elastic distortional en
ergy of the material, and when it is nonuniformly deformed, 
this quantity is perhaps better derived from the energy, instead 
of from the mean stress (13). The energy approach can also 
account for the contribution of local heterogeneity to a certain 
extent, and is believed to be able to reflect the general plastic 
state of the matrix more accurately. Now keeping in mind that 
the comparison material possessing the equivalent transfor-
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mation strain in the regions occupied by the voids is a linear 
solid, we may write its elastic energy of a unit volume as 

rr 1 -2 .1 - 2 

6/Xj 2KS 

\ \ af(x)ef(x)dV, (14) 
ZJVo 

in terms of the local stress and strain fields in matrix, since 
the voided regions contribute no energy. The detailed c/$(x)-
field in the matrix is in general not known, but it fluctuates 
over its mean o*$ with some "perturbed" field o^y(x). Then, 
we may write 

\ \ cr<»<f(x)rfK 
•>v0 

Co TJiffte.W Ju + -[ a!fm(x)o(f,(-a\x)dV 
CoV0 

+ 
Co 

Cniv„ 
nttm 
kk 

(x)dV (15) 
9 K 0 \ "" c0JVo 

We now define the effective stress of the matrix o£0) from its 
distortional energy 

£ / _ , mv- . fn\ 1 
= 2 

, (0 )2 , a i ^ ^ + ( < ' ( 0 ) ( 
CQ^VQ 

(x )< w (x ) r fK (16) 

This new </e
0) is always greater than the original one calculated 

from 5;j0) alone, and also includes the contribution from the 
local perturbed field. The overall response predicted by the 
new theory, therefore, will always be softer. Now returning to 
(14), we find 

6MoY 1 -2 , 1 -2 \ 3/4> / - ( U K , ^j„UK/_.w i / 1 7 ) , (°)2 - C0 \6n. 2K, «0 
+ <<<°'2(x)> 

where < • > is the volume average of the said quantity. 
For a porous material, a^ is simply given by a^ = (l/c0) 

am, and 

«o 

1 
Ci 3K0 + 4/4 

1 + 
S " 

Mo 

1 
c, 5(3*0 + 4/4) 

(18) 

1 + 
c 0 4ns

0 ' ' c0 9K0 + 8^O 

This pair of moduli, as mentioned earlier, coincides with Hashin 
and Shtrikman's (1963) upper bounds in the elastic case. 

It is evident from (17) that, even under a purely hydrostatic 
loading, the effective stress of the matrix is now nonvanishing. 

4 Elastically Incompressible Matrix and the Connec
tion with Ponte Castaneda's Bound of the Hashin-
Shtrikman Type 

When the matrix is elastically also incompressible (KO-*°°), 
Ponte Castaneda (1991) has provided a lower bound for the 
strain potential under a prescribed stress. For the convex func
tion chosen here, this is equivalent to an upper bound for the 
overall stress at a given prescribed strain. The possible con
nection between the present theory and his bound is explored 
here. 

According to the present theory, the effective secant bulk 
and shear moduli of the porous medium in this case can be 
further reduced to 

Ks_4_Co Ms_ 

MO 3C! Ho 

Co 

, 2 

1 + 3 C l 

(19) 

from (18), and the effective stress of the matrix follows from 
(17) as 

Q H / 2 

-2 , ' „ - 2 
1 

C0 

1 + 3 C 1 \Oe + -C\0„ -s, say. (20) 

At this t$\ we have, from (6), 

eT>=f'{s) and fi = — 
3/ ' ( * ) ' 

and, consequently, 

4Cn 

'3c, 3f'(s)' M*= 
Co 

1+fc,*™ 

(21) 

(22) 

On the other hand, Ponte Castaneda's theory ajlows one to 
construct a lower bound for the strain potential 0_(5) (which 
was referred to as stress potential in his paper) of the nonlinear 
solid from that of a linear composite U possessing an identical 
microgeometry. The best possible linear bound of this type is 
the Hashin-Shtrikman (1963) bound #-S- With this, Ponte 
Castaneda's lower bound is simply given in terms of the strain 
potential of the matrix (7), 

Opc(a) = cof(s), (23) 

with the same s as in (20). The corresponding mean and ef
fective strains of the composite then follow from 

1 # ) 1 , , , , ds 3Clam 

3 oom 3 aa,„ 4 c0 s 

^ = c 0 ^ = c 0 / ' ( , ) - = 1 + - C l 7 ?/-<*>• (24) 
Co S 

Since Ks = am/(3em) and ixs = ae/(3ee), the overall stress-strain 
relation derived from this bound is seen to coincide with (22). 
In retrospect, Tandon and Weng's (1988) original approach 
would lead to a result which coincides with that derived from 
Willis' (1990) type-1 bound and, as pointed out by him, is 
suitable only when the triaxiality is not high. 

The quantitative accuracy of the theory can in part be as
sessed by comparing it to the exact solution when the porous 
material is subject to a pure hydrostatic tension am. Based on 
the model of composite sphere assemblage and adopting a 
bilinear («=1) stress-strain curve for the ductile matrix, the 
overall stress-strain curve can be derived analytically following 
the approach of Hill (1950) and Chadwick (1963). With the 
specific constitutive equation adopted in (1), detailed study for 
the symmetric deformation has been carried out by Qiu (1990), 
and with the bilinear curve («=1) , analytic results are sum
marized in the Appendix. At Cj = 30 percent, the results by 
both the present theory and the exact analysis are shown in 
Fig. 1 at four different E^/E0 ratios, where El is the tangent 
modulus of the matrix in the plastic range (Ep

0 = da/de). Here 
the material constants used are those of aluminum given in 
(5), except for p0 = 0.5, « = 1, and 

MPa 

Fig. 1 Present theory versus the exact solution for a porous material 
under pure dilatation: elastically incompressible matrix 
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Fig. 2 Present theory versus the exact solution for a porous material 
under pure dilatation: elastically compressible matrix 

Eg 

El 

(25) 

The solid lines derived from the present theory (and the PC 
bound) are consistently higher than the dotted ones from the 
exact analysis, thereby justifying its upper-bound status. Since 
local yielding is not fully accounted for by this theory, the 
estimated initial yield point is noticeably higher than the actual 
one. (If such an information is desired, it can also be found 
from the mean-field approach by using the additional jump 
condition at the interface as suggested by Tandon and Weng 
(1986a) and the same initial yield point would have been ob
tained here.) But in the fully plastic range, the predictions by 
the present theory are seen to be generally acceptable. The 
greatest discrepancy occurs with an ideally plastic matrix 
(£0 = 0) where the error is about 7.5 percent at e t t = 0.03. The 
agreement steadily improves with an increasing work-hard
ening modulus, and coincides exactly when Ep

a/E0 = 1 (elastic). 
The fact that the present theory provides a more accurate 

result when E%/E§ is high is attributed to the linear comparison 
material adopted in the theoretical formulation. Such an ap
proximation is apparently more justifiable with a high E%/E0 

and becomes less so with an ideally plastic solid. Since most 
metals exhibit a certain degree of work-hardening, the theory 
is believed to be a sensible one for this class of materials in 
the fully plastic range. 

5 Elastically Compressible Matrix 
When the matrix is elastically compressible, the contribution 

to the total energy by the hydrostatic component—the last two 
terms in (17)—must be subtracted in order to find oi0>. Under 
a general ov,-, however, the perturbed term is usually not known 
(in particular, when the voids are not spherical). But under a 
pure <rm, the symmetric problem can still be solved analytically 
(see the Appendix) and this allows one to assess the degree of 
accuracy if this term is neglected in the calculation. We again 
used the properties of aluminum, with c0 = 0.33, and adopted 
the bilinear curve (n = 1) as before to calculate the stress-strain 
curves at the same four E^/E0 ratios. The results by the present 
theory (after neglecting the cr£'(0)-term) and the exact analysis 
are shown as solid and dashed lines, respectively, in Fig. 2. It 
appears that by such an approximation the theory exhibits 
about the same degree of accuracy as in the incompressible 
case (Fig. 1). 

These simple calculations suggest that, as an approximation, 
the perturbed term in (17) may be discarded and the effective 
stress be taken as 

.C)2 : M(± 
Co \6ns 

2KS *0 

:(0)2 (26) 

No other types of loading can have an exact solution. Finite 
element analysis, however, has been carried out'for pure ten
sion and pure shear by Horn and McMeeking (1989). They 
adopted the constitutive equation 

(ffe/oo) - °e/°0 = PAkAo) 'e"e (27) 

instead of (1) for the matrix, with JV=0.1, £"0/̂ 0 = 200, and 
v0 = 0.3. With this set of data, we also applied (26) to calculate 
the overall response of the porous material at cx = 6.5 percent. 
The results provided by the present theory, their finite element 
calculations, and those of Gurson (1977) and Tvergaard 
(1981)—both taken from Horn and McMeeking— are depicted 
in Figs. 3(a) and (b) for pure tension and pure shear, respec
tively. Despite the simplicity of the present theory, its quan
titative accuracy is seen to be satisfactory. 

6 Influence of the Pore Shape on the Isotropic 
Response 

The preceding principle can be applied to examine the in
fluence of pore shape on the overall elastoplastic response of 
a porous material containing randomly oriented spheroidal 
pores. Let the shape of pores be represented by the aspect ratio 
a (length-to-diameter ratio). The overall secant moduli of the 
porous medium then can be deduced from the effective moduli 
derived by Tandon and Weng (1986b) for a two-phase com
posite 

lis 1 £ s _ 

K0 l+Cip' /XQ 

1 
l+ciq' 

(28) 

where 

P=Pi/P\, Q = Qi/Qi; (29) 

and after making use of the properties of the voids, 

l - / o 
Pi--

6( l -2 /o) 

. 1 8 a 2 - 4 ( H V 0 ) ( a 2 - 1)-3[2(1 -2i / 0 ) (a 2 - l) + 3(2a2+ l)]g 
lot + [(1 - 4c/) + (1 + i>s

0)(a - l)g]g 

Qj = 
8 ( 1 - / o X a 2 - ! ) 1 

4</ + [(1 - 2vs
0)(a

l - 1) - 3(a" + l)]g 

1 
a2 - 4(1 - /0)(a2 - 1) + [2(1 - 2/0)(o:2 - 1) - 3/2]g 

4 ( 1 - < / 0 ) ( Q ; 2 - 1 ) 1 

15 2a2 + [(1 - 4a2) + (1 + vs
0)(a

2 - l)g]g 

and for the parameter g, 

S=7~5—7372 W « 2 - 1 )1/2 - cosh ~ la], prolate shape 
(a - 1 ) 

(30) 

2 
sphere 

= 2372"[cos a - a ( l - o r ) ], oblate shape. (31) 
( l - « ) 

With spherical voids (a= 1), this set of moduli reduces to the 
simple upper-bound form in (18). 

If the matrix is elastically also incompressible (>>o= 1/2), fur
ther simplification can be made: 

KS 2c02ot2-(a - l ) g ns 1 

fiso~ c, 2 a 2 + l ' M5~ , Ci ' 
1 + —<?2 

Co 

(32) 

where 
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Fig. 3 Present theory versus finite element calculations and other 
models for a porous material under (a) pure tension and (o) pure shear 
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Fig. 4 Pore-shape dependence of the tensile behavior of a porous ma
terial with (a) elastically incompressible and (b) elastically compressible 
matrix 
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9 2 = — 
4(a2- l) 

-4a 2 + 3(a2+l)g 

4-2ai2-3g 3(2-3g)[2«2-(a2-l)g] 
(33) 

Using the general properties of aluminum given in (5), the 
tensile properties of the porous material with an elastically 
incompressible matrix (j»0 = 0.5) and a compressible one 
(p0 = 0.33) are plotted in Figs. 4(a) and (fi), respectively, at 
cx = 20 percent. Consistent with the known elastic behavior (see 
Tandon and Weng, 1986b), the disk or penny-shaped pores 
are seen to cause the severest weakening effect in both cases, 
whereas the spherical voids are the least damaging. The overall 
response appears to be relatively insensitive to the pore shape 
when it is prolate, but the sensitivity is quite pronounced when 

it becomes oblate. In the incompressible case, the top curve 
on the left also coincides with that derived from Ponte Cas-
taneda's lower bound of strain potential (or upper bound in 
the sense of flow stress). Although no such upper-bound con
nection can be claimed for the upper right curve, any other 
type of pore shape all results in a softer response for the porous 
material. 

7 Generalization to a Particle-Reinforced Isotropic 
Composite at Low Concentration 

Under the condition of low concentration, this new defi
nition of effective stress also permits one to examine the overall 
elastoplastic behavior of a particle-reinforced composite. With 
spherical inclusions, the effective secant moduli are already 
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given in (11) and (12). The average stress of the matrix is given 
in (8) and (9), and for the inclusions, 

°{£ = a\°m, ar-
« i 

(c{ + c0a
s
0) (K{-K0) + K0' 

o'um = b ^ , bt= * . (34) 
(Cl+ CQPO) ()li- Ho) + fig 

The elastic inclusions will also contribute to the total elastic 
nergy Us in (14), and the effective stress of\ originally defined 
in (16), now takes the form 

6/io/ 1 _2 , 1 _ 2 \ 3/10, 
c0 \6/is 2KS I K0 

J0)2 _ To^+<oT2» 

6/4 
Co 

•C\ ~(5™+«fe>™» + ±(a™ 
bfii 2/q + <a MD2 » 

(35) 
instead of (17). The evaluation of this quantity requires the 
knowledge of <ap

e'
m2> and <<J£' (1 )2> as well, and these, in 

general, are not known. At low concentration, however, the 
stress field in the inclusions must be reasonably uniform, and 
consequently, these contributions will be dropped. Again, ne
glecting < o-m'<0)2 > as before, the effective stress of the ductile 
matrix becomes 

(0)2 _ rio 
ue — 

Co 

1 
-

Us 

ctf 
-

/*1 

ff^ + 3 
1 

-
"s 

Co«o 
- -

K0 

Cl«l 
~ 

«1 
<£ (36) 

after making use of the relations in (9) and (34). 
To assess the accuracy of this model we again compare it 

to the exact solutions when the composite sphere assemblage 
is subjected to a pure hydrostatic tension. Such an exact anal
ysis has been carried out by Chu and Hashin (1971) using 
Ramberg-Osgood's constitutive equation (without a yield 
point), and by Qiu (1990) using (1) (see the Appendix for the 
end result of the bilinear case). The value of E0, o>» and v0 
here are taken as those of aluminum in (5), but with « = 1. 
The present theory coincides with the exact analysis when 
EP

0/EQ = 1, as the dilatational field in the inclusion and the 
ductile matrix are both truly uniform (Hill, 1963). The most 
critical test lies with the ideally plastic matrix; so two types of 
h or Ep

0 are selected: h = Ep, = 0, and Ep
0/E0 = 0.l. Taking 

vl = u0 = 0.33 for simplicity, the results at Ci = 30 percent are 
shown in Figs. 5(a) and (b), respectively. To investigate the 
influence of inclusion stiffness on the plastic volume expansion 
of the composite, each is investigated with five Ei/Eo ratios: 
oo, 10, 1, 0.1, and 0. Both the exact analysis (the dashed lines) 
and the present theory (the solid lines) indicate that, when 
inclusions are elastically stiffer than the matrix (Ei>E0), the 
overall nonlinearity or plastic volume expansion, as asserted 
before, is indeed small, and disappears completely when both 
phases possess the same elastic moduli. However, it becomes 
more visible when inclusions are elastically softer than the 
matrix, with voids giving rise to the most pronounced effect. 
The overall accuracy of the present theory, even at this finite 
concentration, is seen to be remarkable indeed. (There is, of 
course, no assurance that under other types of loading, or 
when the inclusions are not spherical, the same degree of ac
curacy can be achieved.) 

Finally, it is instructive to compare the new theory with 
Tandon and Weng's (1988) original one. When the inclusions 
are elastically stiffer than the matrix, we choose the silicon 
carbide/aluminum system with Ei = 490 GPa and vx = 0.17 for 
the carbides (Arsenault, 1984), and subject it to a pure tension. 
For a composite with elastically softer inclusions, we choose 
i?1 = 6.83 GPa (one order of magnitude softer) and ^ = 0.33. 
The overall stress-strain curves of the matrix and the composite 
are shown in Fig. 6(a) when the inclusions are stiffer and in 

Fig. 6(b) when they are softer. The new theory, as expected, 
gives a softer estimate for the overall behavior of the com
posite, regardless of the relative rigidity of the inclusions. 
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A P P E N D I X 

Exact Solution for the Overall Stress-Strain Relation 
Under a Pure Hydrostatic Loading 

Within the small-strain range (without considering the void 
growth or collapse) and assuming a bilinear stress-strain re

lation (« = 1) for the matrix, the overall hydrostatic stress-strain 
curve for a particle-reinforced composite can be constructed 
in three steps: 

(i) The onset of yielding occurs at 

9«! 1-
Okk= ± 20-c,)+-

-;>o 

«** = ± 

_ « 1 

3/q 2 1 

3 K 0 2/Xn K Q - K ] 

l -"o 
En 

(Al) 

(A2) 

where, and hereafter, the positive sign is chosen when KI<K0> 
and the negative sign is selected when /q > K0. 

(ii) Partial yielding in the matrix, with r = R, denoting the 
elastic/plastic boundary: 
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where «] and a2 are the radii of the inclusion and matrix, and 
H=[\+2{\-va)h/E0]~l. Using R as the parameter, the akk 

versus e t t relation can be generated by increasing R from a, 
to a2. 

(A3) 

£(«2) = 

KI E0 cx 3 ci 3E0 \ci °> ~ j ff** 

3K 1 

1 -
+ — ( - - 1 

(0 2//Cj 3 \ c i 

"' (A5) 

(iii) Fully plastic state: At a given akk, the radial strain at 
the outer boundary r=a2 can be written as 

e/ck' 
3*i 1-VQR 

+ -
1 R1 

KQ-Kt a\ 3K0 2/i0 «2 

4(1 -p0) 

+ -Hln 
KO 

R 

« i 

+ -3KOE0 

m**^ (A4) 

and for the composite, 

akk 3(1 - u0) 3 
^ = 3^±_§~(7^2He-(a2)- (A6> 

Then by increasing CT^, the akk versus ekk curve can be con
structed. 

These results can be applied to a porous material (/q = £, = 0), 
and elastically incompressible matrix (p 0=l/2) . Detailed de
rivation can be found in Qiu (1990). 
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Textural and Micromorphological 
Effects on the Overall Elastic 
Response of Macroscopically 
Anisotropic Composites 
The Mori-Tanaka elastic response of composites with inclusions exhibiting nontrivial 
orientation distributions is studied. The effect of texture is evaluated for various 
fiber and matrix materials, various inclusion geometries, and in the presence of 
anisotropic fibers. In particular, the effect of misalignment is studied. The polyphase 
extension of the Mori- Tanaka theory is employed to determine the effective response 
of aligned composites containing defects of different morphologies. 

Introduction 
For injection-molded short-fiberglass-reinforced compos

ites, the orientation profile of the fibers is determined by several 
factors, such as the shape of the mold, the fiber concentration 
level, the occurrence of turbulent phenomena, and the tem
perature field (Chung and Cohen, 1985). In first approxima
tion, the fibers may be assumed to be oriented along the flow 
lines. It is then easy to visualize that the general orientation 
distribution for these composites will not be random, three-
dimensionally or two-dimensionally, unless particular condi
tions are met. This fact, which is common to most other form
ing techniques, prompts questions about the incidence of the 
orientation portrait—or texture— on the overall mechanical 
response of composite materials. 

A second, well-knownmicrostructural factor that influences 
the overall composite response is fiber geometry, that is in 
turn controlled by extrusion parameters (e.g., Boscolo et al., 
1990). 

With this background, the homogenizing approach of Mori-
Tanaka (1973) is here extended and employed to evaluate the 
effective elastic response of textured composite with arbitrary 
ellipsoidal inclusion geometry. Multiphase cases are consid
ered, and arbitrary inclusion anisotropy is a priori permitted. 
Numerical techniques are employed to explicitly compute the 
effective stiffness tensor and elicit its dependence on the com
positional, distribution, and micromorphological data. The 
inclusions' orientation profiles are here statistically represented 
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by orientation probability density functions, following Ferrari 
and Johnson (1989). 

Several works on the effective medium theory based on the 
assumption of Mori and Tanaka have appeared in the recent 
literature on composite and porous materials, among which 
Taya (1981), Taya and Mura (1981), Takao et al. (1982), Weng 
(1984), Benveniste (1986, 1987), Benveniste et al. (1989), Zhao 
et al. (1989), and Ferrari and Johnson (1989). Favorable the
oretical considerations on this method include that: (i) Its 
predictions lie within the known exact bounds for macroscop
ically isotropic (Weng, 1984; Norris, 1989) and transversely 
isotropic composites (Zhao et al., 1989); Norris, 1989); (ii) The 
Mori-Tanaka effective stiffness tensor is symmetric for random 
or unidirectional biphase composites, as well as for all biphase 
composites with spherical or isotropic inclusions (Ferrari, 1991); 
(iii) The model was shown to be in excellent agreement with 
experimental evidence for several material and distributional 
combinations (Weng, 1984; Boscolo et al., 1990). 

The Mori-Tanaka model thus appears to be on firm ground, 
for use in most technologically significant applications. How
ever, to its detriment it is noted that: (a) Property (i) does not 
generalize to multiphase composites (Norris, 1989), with the 
notable exception of those with spherical inclusions (Tandon 
and Weng, 1986); The Mori-Tanaka stiffness tensor associated 
with textured or multiphase media is generally asymmetric 
(Benveniste et al., 1989; Weng, 1990; Qiu and Weng, 1990; 
Ferrari, 1991); (c) At the unitary fiber concentration limit, the 
Mori-Tanaka approach is also found to exhibit a physically 
unacceptable behavior, unless the fibers are isotropic or per
fectly aligned (Ferrari, 1991). Even for the case of isotropy, 
the accuracy of the method at high concentrations was chal
lenged (Christensen, 1990). 

None of the systems examined in the sequel suffers from 
any of the drawbacks (a)-(c), with the exception of a slight 
asymmetry exhibited by the effective stiffness tensor of Section 
3.5. Since the present approach yields the entire stiffness ten
sor, its symmetry or lack thereof may be directly verified. 
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Fig. 1 Convention on Euler angles 

Approaches other than the Mori-Tanaka scheme may be 
used for the estimation of the effective elasticities of inhom-
ogeneous materials, but, to the best of the authors' knowledge, 
none has been used for materials with arbitrary inclusions 
morphology, texture, material symmetry, or with more than 
two phases. 

2 The Mori-Tanaka Homogenizing Scheme for TV-
Phase Short Fiber Composites with Texture 

By an "effective medium," which is elastically equivalent 
to a given inhomogeneous material, the homogeneous material 
is indicated, the stiffness tensor C of which maps an homo
geneous deformation e° applied at the boundary of the real 
body into the average stress a thus generated 

ff = Ce°. (1) 

Let a representative volume element of a composite material 
be constituted by a matrix phase, of elastic tensor C", rein
forced by iV-1 families of inclusions (fibers), the stiffness ten
sors of which are denoted by C, for /' = 1,2, . . . TV- 1. The 
orientation distribution of the z'th family of fibers, all of the 
members of which are taken to have the same shape and to 
be composed of the same material, is described by the ori
entation probability density function/X'/'i. 4>, ^2). also known 
as ODF. Its argument is a triad of Euler angles, collectively 
defined as g, indicating the orientation of the fiber-fixed frame 
K' with respect to the sample-fixed frame K, according to the 
convention given in Fig. 1. 

The texture-weighted orientation average of any given ten
sorial field F', defined on the fth fiber family, and expressed 
in a sample-fixed frame is 

{
7T n2/K rti/K 

IKFYMsinWPidfadt (2) 
0 •'o •'o 

where n(.) is the frame change operator. Thus, the typical 
element of the tensor IT (F') is a linear combination of T?-foId 
products of elements of Euler matrix, R being the tensorial 
rank of F;. 

The orientation-dependent strain concentration tensors A', 
for / = 1. . . TV- 1, are now introduced as 

V = A!f° (3) 

thus relating e', the average strain in rth inclusion family, to 
the global average strain e°. In terms of the unknown tensors 
A', the effective stiffness is thus deduced to be 

C = Cm + E,o;,<(C/-Cm)A''>/ (4) 
where a,- is the volume fraction occupied by the zth family 
of fibers, and all explicit summations are on the range i 
= 1 N-\. 

The assumption of Mori-Tanaka (1973), originally intended 
for the isotropic biphase case only, is generalized here for TV-
phases: 

where I is the fourth-rank tensorial identity, T' is Wu's tensor 
T''=[I + E''(Cmr1(C'-Cm)]1, (6) 

and E' is Eshelby's tensor, which may be found in (Mura, 
1982). 

The effective stiffness tensor, obtained via (4) and (5), is 
CMr=Cm + E,a,<(C-Cm)T,'>,[amI + Eya,<T7>y]-

1. (7) 

This treatment introduces a dependence of the effective re
sponse on the morphology of the embedded phases, through 
Eshelby's tensors E', as these tensors are functions of the aspect 
ratios of the inclusions (assumed to be ellipsoidal). The ori
entation profiles of all embedded phases enter the scheme in 
a statistical sense, via the ODF-weighted Euler integrals of type 
2. The ODFs may be deduced theoretically, through rheological 
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Table 1 Percentage of cylinder axes or disk normals contained 
within ± x rad of the direction of alignment (two-dimensional 
variation, in the xl-x2 plane), for various In 7 
Ln 7 
- 3 
- 2 
- 1 

0 
1 
2 
3 
4 
5 

X=T/6 
32.20 
31.82 
36.69 
54.12 
77.79 
99.91 
95.59 

100.00 
100.00 

X = TT/9 
21.28 
20.96 
24.67 
37.85 
58.43 
82.04 
97.31 
99.97 

100.00 

X = T T / 1 8 
10.54 
10.34 
12.38 
19.50 
31.60 
49.77 
73.14 
93.18 
99.74 

considerations, or experimentally—from microphotographic 
analysis (Boscolo et al., 1990) or otherwise. If the experimental 
approach is selected, or certain analytical developments are to 
be pursued, it is convenient to expand the ODF in a series of 
generalized spherical functions. The relative harmonic analysis 
results were originally presented by Ferrari and Johnson (1989). 
Their notation and methods will be used throughout this work. 

3 Dependent of the Effective Moduli on the Material, 
Geometric, and Distributional Characteristics of Com
posites Exhibiting Texture 

3.1 Dependence of the Effective Young's Moduli on the 
Fiber Orientation Distribution. A typical polyester-fiberglass 
composite is considered here, with an isotropic matrix of elastic 
moduli (km, urn) = (4.9, 1.2) GPa, containing one family of 
isotropic inclusions of moduli (XI, /d) = (20, 30) GPa. The 
fibers are taken to occupy 1/3 of the composite, volume wise. 
Three inclusion geometries are separately considered: 
(i) Circular cylinder: al/a3—0, al = al and nonzero, 
(ii) Disk-like shapes: a\/dS = 50,al=al. 
(iii) Triaxial ellipsoidal: (al/a3, a2/a3) = (3, 2). 

Here and throughout this work, ai is the semi-axis of the 
inclusion in the /'th coordinate direction of the inclusion-fixed 
reference frame. For ease of visualization, we selected the x3' 
axis of the fiber-fixed frame K' to be aligned with the cylinder 
axis for case (i), and with the normal to the disk for case (ii). 

Two orientation probability density functions are separately 
studied: 

fdg; y) = kyGy(^-ir)8^-w/2)6^2) (8) 
and 

f2(g;y) = /cyGy(i;i-Tr)Gy(<j>-ir/2) Gy(i2--w), (9) 

where 

Gy(x)=exp(-yx2). (10) 

8(x-x) is Dirac's delta distribution, centered at x, and ky is 
a 7-dependent normalization constant. The G-functions are 
symmetric with respect to the central point of their range of 
definition, given the indicated choice of arguments. 

3.1.1 Effective Moduli Under the Orientation Distribution 
(8). Upon varying y from 0 to oo in (8), the orientation 
distribution is made to vary from a condition of transverse 
isotropy around the x3-axis of the lab-fixed frame to a con
dition of perfect alignment of the x3' axes with the xl direction 
of the lab-fixed frame. In particular, 7 = 0 corresponds to 
the x7>' axes being randomly distributed in the lab-fixed xl-
x2 plane. As 7 approaches 00, the orientation distribution tends 
to a Dirac's delta, centered at (\j/i, $, \p2) = Or, T / 2 , 0). It 
may be noted that 7 = 00 yields transverse isotropy around 
the *2-axis, provided that the inclusions be spheroidal (al 
= a2). The distribution / [ (g; 7) models in-plane fiber misa
lignment around thex2-axis, a quantitative assessment of which 
is given in Table 1 as a function of ln 7. 

- 3 - 1 1 3 5 
Ln y 

Fig. 2 Dependence of the moduli on In y (Section 3.1.1) 

Figure 2 exhibits the dependence of the Young's moduli in 
the three composite coordinate directions on ln 7. For the 
cylindrical geometry (case (i)), £11 and £22 are seen to coa
lesce, as 7 tends to 0. This is the expected result, considering 
that the vanishing of 7 corresponds to the cylinders axes being 
contained in the xl-x2 plane, and there randomly oriented. 
For vanishing 7, £11 and £22 tend to a limit value, higher 
than £33. As 7 grows, £11 decreases and coalesces with £33, 
while £22 asymptotically approaches the upper Hashin-Hill 
bound. For the sake of comparison, Young's effective modulus 
for the same composite, in condition of macroscopic isotropy 
(/( .) = 1), i s £ = 10.8 GPa. 

With the disk-like geometry (case (ii)), the highest value for 
the moduli is attained by £33, corresponding to 7 = 0. As 7 
increases, £33 tapers off, while £11 increases. For 7 ap
proaching 00, these moduli reach the same asymptotic value. 
The isotropic modulus for this composite is £ = 13.8 GPa. 
For both cases (i) and (ii), £33 shows a moderate decrease with 
the improving of the alignment. 

The Young's moduli for the geometric type (iii) exhibit the 
expected trends, and vary minimally with 7. Their values al
ways remain close, and considerably well below the corre
sponding value for the other geometric types studied. The 
isotropic modulus for this composite is £ = 6.8 GPa. 

3.1.2 Effective Moduli Under the Orientation Distribution 
(9). In conjunction with (9), the orientation parameter 7 is 
allowed to vary in the range (0, 00). The case 7 = 0 corresponds 
to three-dimensional isotropy. As 7 approaches 00, the ori
entation distribution tends to a Dirac's delta, centered at (^j, 
0> ^2) = (T . T / 2 , W). This rotation exchanges thex2 ' andx3' 
directions. Thus, for case (i), all of the cylinders are aligned 
with the xl lab-fixed axis, while for case (ii), all of the disks' 
normals are. In this sense, f2(g; 7) models three-dimensional 
fiber misalignment about the lab-fixed xl axis. 

Figure 3 displays the dependence of the Young's moduli in 
the coordinate directions on ln 7, for the three inclusion ge
ometries specified above. For both the cylindrical and the disk
like geometry, at large values of 7, £11 and £33 approximately 
coincide. The corresponding £22 is considerably higher, for 
the cylindrical inclusions, but much lower, for the disk-like 
ones. The effective moduli associated with (8) and (9) coincide, 
for large 7, for cases (i) and (ii), as expected from the limit 
properties of these distributions. For the spheroidal case, the 
£22 and £33 values are exchanged. 

3.2 Dependence on the Effective Young's Moduli on the 
Inclusion Material, Morphology, and Concentration for Com
posites Exhibiting Texture. Textured biphase composites are 

Journal of Applied Mechanics JUNE 1992, Vol. 59/271 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Disk-like fibers 
Cylindrical fibers 

Ln 7 

Fig. 3 Dependence of the moduli on In y (Section 3.1.2) 

considered here, consisting of a polyester matrix material with 
Lame's moduli (Xm, \i.rri) = (4.9, 1.2) GPa, and inclusions of 
variable constituent material, morphology, and concentration 
levels. The texture is given by the orientation probability den
sity function 

/ ( * )= *8 ( * - i r / 2 )8 ( f c ) . (11) 

For this function all xpi values are equi-probable, and (</>, \p2) 
are fixed at the values (ir/2, 0). Thus, all the x3'-axes of all 
inclusion-fixed frames lie in the xl-x2 plane, and are randomly 
oriented there. This entails transverse isotropy of the elastic 
properties around the x3 axis of the sample-fixed frame. 

Spheroidal inclusions are considered, with semi-axes a\ 
= al. For the description of the effects of the inclusions' 
geometry on the macroscopic moduli, the geometric parameter 
m is introduced as 

a3/al, for me[0,1] 

m= (12) 

l-al/al, for we[1,2] 
Thus, as m grows from 0 to 1, it describes oblate spheroids 
of increasing thickness, whereas in the range [1, 2], it describes 
prolate spheroids—the case m = 2 corresponding to infinite 
axial length. 

3.2.1 Effect of the Inclusion Geometry and Concentration 
for a Given Inclusion Material. An inclusion material, with 
Lame's constant (A/, /*/) = (20, 30) GPa, is employed here. 
Figures 4 and 5 display the contour lines of the graph, giving 
£11 = £22 and £33 as functions of the inclusions' concen
tration level and geometric parameter m. Some interesting 
features are: 
(i) For m > 1, and any concentration level, £11 is greater than 
the isotropic modulus, which in turn exceeds £33. For m<l, 
this chain of inequalities is reversed. At m = 1, the three 
moduli obviously coincide: spherical inclusions of isotropic 
materials are incapable of texture. 
(ii) At any concentration level, £11 and £33 are monotoni-
cally increasing functions of m, for m> 1 and m< 1, respec
tively. In the complementary ranges for m, they are not 
monotonic. 
(iii) The highest overall modulus, at any fixed fiber concen
tration, corresponds to £33 for disk-like inclusions. 

For the case of random orientations (f{g) = 1), it is found 
that any assigned value of the isotropic modulus E is realized 
with the minimum (maximum) amount of reinforcing material 
for the case of vanishing (unitary) aspect ratio corresponding 
to the higher (lower) Hashin-Shtrikman bound for a fixed 
inclusions' concentration. 
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Fig. 4 Dependence of £11 = £22 on inclusions'geometric parameter 
m and concentration, texture given by (11) (Section 3.2.1) 

0.0 0.5 1.0 1.5 2.0 
Geometric parameter 

Fig. 5 Dependence of £33 on inclusions' geometric parameter m and 
concentration, texture given by (11) (Section 3.2.1) 

3.2.2 Effect of the Inclusion Modulus and Geometry at a 
Fixed Concentration Level. The independent variables of this 
section are the inclusions' Young's modulus and geometric 
parameter m. The dependence of £11 = £22 and £33 on these 
variables is given in Figs. 6 and 7, where the inclusions' Poisson 
ratio is fixed at 0.2, and the concentration level is a = 1/3. 
Smaller aspect ratios are shown to have a greater relative stiff
ening effect on the material, in the direction along the trans
verse isotropy axis x3, while higher ratios enhance more the 
in-plane modulus £11. It is interesting to note that equal moduli 
may be obtained employing fibers of slightly different aspect 
ratios, and considerably different moduli. In order to stress 
this point, that may be of technological relevance, we explicitly 
note that, for this composite, the value of £33 = 8.00 GPa 
is obtained for fibers of modulus Ef = 100 GPa and aspect 
ratio of 0.37, and for fibers of modulus Ef = 300 GPa, and 
aspect ratio of 0.45. For these cases, £11 = 6.7 and 6.9 GPa, 
respectively. 

Figure 7 shows that the £11 modulus associated with the 

cylindrical geometry greatly exceeds the corresponding mod-
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Fig. 6 Dependence of £11 = £22 on inclusions' geometric parameter 
m and Young's modulus, texture given by 11 (Section 3.2.2) 
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Fig. 7 Dependence of £33 on inclusions' geometric parameter m and 
concentration, texture given by (11) (Section 3.2.2) 
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Fig. 8 Equlmodular lines for £11 = £22, in terms of the Young's moduli 
of the inclusions and of the matrix, texture given by (11) (Section 3.3) 

ulus, for the disk-like case, at high-fiber moduli. Thus property 
(iii) of Section 3.2.1 is not generally true. 

Comparing Figs. 7-8, it is noted that the presence of texture 
depresses the modulus-reinforcing effect due to the slenderness 
of the fibers in thex3-direction, while it attenuates the in-plane 

reinforcing effect due to the fibers' higher stiffness for disk
like geometry. 

3.3 Effect of the Constituent Materials' Moduli on the 
Effective Young's Moduli, for Textured Composites. Figures 
8 and 9 display the equimodular lines for £1 1 = £22 and £33 
in terms of the Young's moduli of the inclusions and of the 
matrix. The Poisson's ratios are fixed at (ym, vf) = (0.39, 
0.2). The texture is given by (11), the volume fraction is a 
= 1/3, and the inclusions are prolate spheroids, with al/a3 
= 50, al = ah. The analysis of Fig. 9 shows that comparable 
£33-enhancement is obtained by slightly increasing the matrix 
modulus, while employing fibers of much lower stiffness. For 
instance, to both (£/, Em) = (300, 5.6) and (100, 7.3) GPa, 
there corresponds an effective £33 = 16 GPa. An analogous 
behavior is not exhibited by the in-plane modulus £11. 

3.4 Poly-Inclusion Materials. Homogenization of a tex
tured material containing more than one type of inclusion is 
performed here according to Eq. (7). As matrix material, the 
isotropic polymer of Sections 3.1 and 3.2 is selected. The first 
inclusion type consists of cylindrical glass fibers, with the mod
uli given in Section 3.1 and with al/«3 = 100, al = al. The 
fibers are perfectly aligned along the specimen xl-direction: 

fi(g)=k8^i)8mS(h). (13) 

The inclusion families 2 and 3 are voids of disk-like and 
spherical geometry, respectively. The geometry of the disk-like 
voids, or cracks, is specified as al/a3 = 50, al = al. Taking 
f (.) = / '( .) , the fibers are orthogonal to the disks' normals. 
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Fig. 11 Dependence of £11, £22, and £33 on the concentrations of 
disk-like voids, for («„ a3) = (0.33, 0.15) (Section 3.4) 

Fig. 9 Equimodular lines for £33 in terms of the Youngs' moduli of the 
inclusions and of the matrix, texture given by (11) (Section (3.3) 

->x> 

Fig. 10 Volume element of the composite of Section (3.4) 

.20 
voids 

Fig. 12 Equimodular lines for £11, in terms of the concentration of 
disk-like and spherical cavities, for a, = 0.33 (Section 3.4) 

Figure 10 shows a representative volume element of this ar
rangement which models a delaminating unidirectional com
posite laminate containing the typical air bubbles that originate 
during the material processing. 

Figure 11 displays the three orthogonal moduli as a function 
of the concentration of disk-like cavities for the fixed value 
of («i, a3) = (0.33, 0.15). The modulus £33—-in the direction 
normal to the disks—decreases very rapidly to an almost-zero 
value, while £1 1 and £22 are respectively reduced by about 5 
percent and 30 percent, for a2 = 0.3 only. The concentration 
of the spherical voids is found not to significantly affect the 
reduction rate d£33/3a2. Figure 12 displays a surprising feature 
of the Mori-Tanaka prediction for the modulus £11 of this 
composite: A critical value a3 is seen to exist, such that for 
a fixed &>a3, a differential increase in a2 from zero results 
in a higher value for £11. 

3.5 Effect of Texture on the Young's Moduli of Com
posites With Anisotropic Inclusions. Two biphase compos
ites are considered here, both with a 1/3 volume fraction 
occupied by fibers of cylindrical geometry—the ratios being 
(al/«3, o2/a3) = (10, 1). The texture is given by (8), thus 
modeling two-dimensional fiber misalignment about the xl-
axis. The matrix material is, for both composites, the isotropic 

Q. " 

0.1 

0.0 

-0.2 

-0.3 

-0.4 

-0.5 

Composite A 

-0 .6 

Ln 7 

Fig. 13 Percentual loss in longitudinal modulus due to misalignment 
for £-glass and HM graphite fiber in polyester matrix (Section 3.5) 

polymer of Sections 3.1.1. The fiber materials are £-glass and 
high-modulus graphite, for composite A and B, respectively. 
The glass moduli were given in Section 3.1. The graphite fibers 
are transversely isotropic. Letting the material and the geo-
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metrical transverse isotropy axes coincide (along xl'), the in
dependent moduli of the graphite are (C{i, C{2, C{2, C{3, C{5) 
= (360, 5, 40, 30, 20) GPa. Figure 13 reports the percentual 
loss of the effective longitudinal modulus of these composites 
due to misalignment. 

The Mori-Tanaka effective stiffness tensor corresponding 
to Composite B is not symmetric, but each of its elements 
differs from the corresponding element of its symmetric part 
by less than two percent. 

4 Discussion/Conclusions 
The Mori-Tanaka analysis of the effects of the fiber ori

entation distribution and morphology was performed here for 
biphase and multiphase composites with isotropic and anis-
tropic fibers. Some observations on the considered cases are: 

1 Relevance of the fiber geometry: At a given fiber con
centration, significant reinforcement is obtained only by em
ploying fibers of near-extremal geometries (see Sections 3.1 
and 3.2.2). 

2 Relevance of the fiber alignment, for unidirectional com
posites: About 90 percent of the longitudinal modulus, cor
responding to the perfect alignment is attained for planar 
distributions with 90 percent of the fiber directions scattered 
by less than 30 degrees. This result holds for both the isotropic 
and the anisotropic cases considered (Sections 3.1.1 and 3.5). 

3 Unidirectional distributions of isotropic disks and cyl
inders are dual. While cylinders provide the maximum lon
gitudinal reinforcement, the disks provide optimal in-plane 
stiffening if the embedded phase is stiffer. 

4 Disk-like inclusions of more compliant material cause 
the maximum relative modulus reduction in the direction along 
their normal (Section 3.4). If the disk material is stiffer, the 
in-plane directions are maximally reinforced. 

The known relations of the Mori-Tanaka predictions to the 
Hashin-Shtrickman and Hashin-Hill bounds were numerically 
confirmed here. 

Acknowledgment 
This work was partially supported by the Committee on 

Research of the University of California at Berkeley and 
through the support of M.F. in the form of a Faculty Research 
Grant. 

References 
Benveniste, Y., 1986, "On the Mori-Tanaka Method in Cracked Bodies," 

Mech. Res. Comm., Vol. 13, pp. 193-201. 
Benveniste, Y., 1987, "A New Approach to the Application of Mori-Tanaka's 

Theory in Composite Materials," Mechanics of Materials, Vol. 6, pp. 147-157. 
Benveniste, Y., Dvorak, G. J., and Chen, T., 1989, "Stress Fields in Com

posites with Coated Inclusions," Mechanics of Materials, Vol. 7, pp. 305-319. 
Boscolo, A., Ferrari, M., Pitacco, I., and Virgolini, M. P., 1990, "Mechanical 

Response of Anisotropic Fiberglass-Reinforced PBT via Microstructural Data," 
EuroMech 269, A. Vautrin and H. Sol, eds., pp. 238-245. 

Christensen, R. M., 1990, "A Critical Evaluation for a Class of Micro-Me
chanics Models," / . Mech. Phys. Solids, Vol. 38, No. 3, pp. 379-404. 

Chung, R., and Cohen, C , 1985, "Glass-Fiber Reinforced Thermoplastics I. 
Wall and Effect on the Rheological Properties," Polym. Eng. Sci., Vol. 25, pp. 
1001-1007. 

Ferrari, M., 1991, "Asymmetry and the High Concentration Limit of the 
Mori-Tanaka Effective Medium Theory," Mech. of Mat., Vol. 11, pp. 251-
256. 

Ferrari, M., and Johnson, G. C , 1989, "The Effective Elasticities of Short-
Fiber Composites with Arbitrary Orientation Distribution," Mechanics of Ma
terials, Vol. 8, pp. 67-73. 

Mori, T., and Tanaka, K., 1973, "Average Stress in Matrix and Average 
Elastic Energy of Materials with Misfitting Inclusions," Acta Metallurgica, Vol. 
21, pp. 571-574. 

Mura, T., 1982, Micromechanics of Defects in Solids, Martinus Nijoff, The 
Hague. 

Norris, A., 1989, "An Examination of the Mori-Tanaka Effective Medium 
Approximation for Multiphase Composites," ASME JOURNAL OF APPLIED M E 
CHANICS, Vol. 56, pp. 83-88. 

Qiu, Y. P., and Weng, G. J., 1990, "On the Application of the Mori-Tanaka 
Theory Involving Transversely Isotropic Spheroidal Inclusions," Intl. J. Eng. 
Sci., Vol. 28, No. 11, pp. 1121-1137. 

Takao, Y., Chou, T. W., and Taya, M., 1982,' 'Effective Longitudinal Young's 
Modulus of Misoriented Short-Fiber Composites,'' ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 49, p. 536. 

Tandon, G. P., and Weng, G. J., 1990, "Average Stress in Matrix and 
Effective Moduli of Randomly Oriented Composites," Comp. Sci. Tech., Vol. 
27, pp. 111-132. 

Taya, M., 1981, "On Stiffness and Strength of an Aligned Short-Fiber Rein
forced Composite Containing Penny-Shaped Cracks in the Matrix," J. Comp. 
Mater., Vol. 15, pp. 198-210. 

Taya, M., and Mura, T., 1981, "On Stiffness and Strength of an Aligned 
Short-Fiber Composite Containing Fiber-end Cracks Under Uniaxial Applied 
Stress," ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 361-367. 

Weng, G. J., 1984, "Some Elastic Properties of Reinforced Solids, With 
Special Reference to Isotropic Ones Containing Spherical Inclusions," Int. J. 
Engr. Sci., Vol. 22, No. 7, pp. 845-856. 

Weng, G. J., 1990, "The Theoretical Connection Between Mori-Tanaka The
ory and the Hashin-Shtrickman-Walpole Bounds," Intl. J. Eng. Sci,, Vol. 28, 
No. 11, pp. 1111-1120. 

Zhao, Y. H., Tandon, G. P. , and Weng, G. J., 1989, "Elastic Moduli for a 
Class of Porous Materials," Acta Mechanica, Vol. 76, pp. 105-130. 

Journal of Applied Mechanics JUNE 1992, Vol. 59/275 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S. Li1 

S. R. Reid 
Mem. ASME 

Department of Mechanical Engineering, 
UMIST, 

Manchester, M60 1QD, U.K. 

The Plastic Buckling of Axially 
Compressed Square Tubes 
A plastic buckling analysis for axially compressed square tubes is described in this 
paper. Deformation theory is used together with the realistic edge conditions for 
the panels of the tube introduced in our previous paper (Li and Reid, 1990), referred 
to hereafter as LR. The results obtained further our understanding of a number of 
problems related to the plastic buckling of axially compressed square tubes and 
simply supported rectangular plates, which have remained unsolved hitherto and 
seem rather puzzling. One of these is the discrepancy between experimental results 
and the results of plastic buckling analysis performed using the incremental theory 
of plasticity and the unexpected agreement between the results of calculations based 
on deformation theory for plates and experimental data obtained from tests con
ducted on tubes. The non-negligible difference between plates and tubes obtained 
in the present paper suggests that new experiments should be carried out to provide 
a more accurate assessment of the predictions of the two theories. Discussion of 
the results herein also advances our understanding of the compact crushing behavior 
of square tubes beyond that given in LR. An important conclusion reached is that 
strain hardening cannot be neglected for the plastic buckling analysis of square tubes 
even if the degree of hardening is small since doing so leads to an unrealistic buckling 
mode. 

1 Introduction 
The elastic buckling analysis of square tubes under axial 

compression has been describe in LR. This treatment gave some 
insight into the subsequent crushing behavior of such tubes 
with regard to the generation of compact or noncompact crush
ing modes. However, when crushing is produced (for example, 
in using such tubes as impact energy absorbers), plastic de
formation is inevitably involved (Mahmood and Paluszny, 
1981). 

In general, plastic deformation is initiated at one of two 
stages. Either buckling takes place in the elastic range and, as 
the deformation increases in the post-buckling phase, plastic 
deformation develops where the stress state reaches the yield 
surface of the material. For problems in this category the 
previous work can be used to predict the buckling behavior. 
In order to pursue the subsequent crushing process, post-buck
ling analysis in conjunction with elastoplastic analysis has to 
be employed which usually involves very complicated and time-
consuming calculations. Alternatively, plastic deformation oc
curs before buckling takes place. In this case, the results of 
the authors' previous work are no longer applicable directly, 
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and a plastic buckling analysis has to be performed. The present 
paper is concerned with this latter category of behavior. 

As is well known, plastic buckling is a controversial subject. 
The theory for columns has been well established since the 
work of Shanley (1947). However, for plates, the results seem 
somewhat contradictory. The well-known conclusion that the 
deformation theory of plasticity gives better results than the 
incremental theory is supported by experimental results (Ger
ard et al., 1957). It has been shown that plastic buckling anal
ysis, which uses incremental theory, is affected significantly 
by the shape of the yield surface of the material, although this 
was not taken into account in the early incremental analysis 
(Sewell, 1964). It seems that a more correct understanding of 
the nature of the problem might stem from introducing a 
proper shape for the yield surface into an incremental analysis. 
While this would be an interesting line to follow, it will not 
be pursued in the present paper. Rather, a simple analysis will 
be developed which utilizes deformation theory together with 
realistic edge conditions for the panels of the tube. This reveals 
some significant differences between the plastic behavior of 
tubes and simply supported plates similar to those shown in 
LR for elastic buckling. These differences challenge the com
monly accepted conclusion regarding the agreement between 
experimental results and results from deformation theory. 

2 Equations for Plastic Buckling and Their Solutions 
In the plastic buckling analysis of axially compressed tubes 

which follows, Stowell's approach (Gerard, 1962) is utilized. 
This was established for simply supported plates and therefore 
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PLATES: SIMPLY 
SUPPORTED. 
PANELS: SYMMETRY 
CONDITIONS 
EQUATIONS (16), 

SIMPLY SUPPORTED 
FOR BOTH PLATES 
AND PANELS 

Fig. 1 A simply supported plate or a panel of a square tube under axial 
compression 

all the assumptions made for plates are adopted here for the 
panels of the tube, except that the edges across the joints of 
the panels are no longer simply supported. For the sake of 
convenient reference, Stowell's plastic buckling analysis of 
simply supported plates by deformation theory is summarized 
in the Appendix. There, Stowell's classical formula for the 
buckling load is simplified for an elastic, linearly strain-hard
ening material by eliminating its implicit nature. For this case 
a comprehensive dimensionless parameter s is introduced which 
encapsulates the influence of all of the material parameters on 
the buckling load. 

For panels of a square tube under axial compression as 
shown in Fig. 1, the incremental in-plane and out-of-plane 
buckling displacements are coupled when the realistic edge 
conditions described in LR are used. Therefore, solutions of 
the buckling equations involve all of them. With the elastic-
plastic stress-strain relations (Al), the buckling equations can 
be expressed as 

1 3 
eu,xx + -u,y), + -v,Xy = 0i 

V,yy + ~A V,xx + -U,xy = Q\ 

K + 2\V,XXyy+W,, lyyyy ISx/ UW iXX — U . 

(1) 

(2) 

All symbols here and subsequently are defined in the Nomen 
clature section. 

In much the same way as in LR, by assuming that 

u =U(y) cosax) 

v= V(y)smaxj 

w= W(y )sinax, (4) 

where a = mir/l, the simply supported conditions along the 
loaded edges are automatically satisfied. Equations (1) and (2) 
then reduce to 

(3) 

- U" -ea2U+-aV = 0, 
4 4 

V" —Aa2V--aU' = o | 
4 4 

W"" - 2a2W" + a 4 ( e -X 2 ^ ) W= 0 

(5) 

(6) 

where primes stand for derivatives with respect to y. Equations 
(5) are associated with in-plane displacements while Eq. (6) 
describes the-out-of-plane displacement. Their solutions give 
the buckling mode and they are discussed separately as follows. 

2.1 Solutions of Eqs. (5)—In-Plane Deformation. The 
solutions of Eqs. (5) are determined by the characteristic roots 
which are two pairs of complex conjugates 

r= ±p±iq 

where 

(7) (p, 9) = "7= VVe±(2e-l). 

Obviously, the values of p and q, and consequently the form 
of the solutions, depend on the value of e which is related to 
the material properties. As has been discussed in LR, symmetry 
about the x-axis (y = 0) is always assumed. 

For perfectly-plastic materials, e = l / 4 , p = 0, and 

q = a/\fi. In this case, the solutions of Eqs. (5) can be ex
pressed in the following form 

U=AiCosqy+A2ysmqy) 
V=B\smqy + Biycosqy) 

where A\, A2, Bi and B2 are constants which are related to 
each other due to equations (5) by 

Ai=y/2B1+--B^) 
3 a (9) 

A2=-yf2B2. J 
For strain-hardening materials, l/4<e<l,p>0, and q > 0. 

The solutions of Eqs. (5) are 

U= A \smhpysmqy + /42coshpj>cos<j'j0 
V= B\&mhpycosqy + B2coshpysmqy \ 

the constants Au A2, Bu and B2 being related by 

(10) 

3 3 / 1 \ 
-aqAl + -aPA1-\p

2-q2—-ct2\ Bi-2PqB2 = 0 

- apAi-- ctqA2 + 2pqB\-lp2-q2-- a2) B2 = 0. 
(11) 

For elastic materials e=l, p = a, q = 0. In this case, the 
solutions of Eqs. (5) have the form 

N o m e n c l a t u r e 

b = width of plates or panels of 
a square tube 
1 3 £ , 

6 = 4 + 4ls 

h = b/t = relative width 
k = l/b = aspect ratio 
/ = length of plates or panels 

of a square tube 
m = axial half-wave number 

t = thickness of plates or 
panels of a square tube 

u, v, w = incremental displacement 
components in directions 
defined in Fig. 1 

vv = ratio of out-of-plane de
flection at edge to deflec
tion at the center of the 
panel 

D = Est
3/9 = plastic bending rig

idity 
E = Young's modulus in elastic 

range 
Es, E, = secant and tangent moduli 

K 

Nx = 

s = 

a 
X 

Nxb
2/T2D = dimensionless 

buckling load 
axial in-plane force per unit 
width (positive for 
compression) 
TT2 1 E,/E 
9h2 a0/El-(E,/E) 
hh 
mir/l 
k/m = dimensionless half-
wavelength 
7T/2X 
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U=Alsinhpy + Aiycoshqy) 
K=i?iSinhpi)' + i?2ycosh#)' \ 

(12) 

which have been fully analysed and discussed in LR, and will 
therefore not be considered further in the present paper. 

2.2 Solutions of Eq. (6)—Out-of-Plane Deforma
tion. The solution of Eq. (6) could take several different 
forms, depending on the value of K. 

v2 

Here, 

If K< e/K, then W= C{coshfiy + C2cosh/y. 

If K=e/X2, then W=Cicosh^y+C2ysinhfiy. 

HK>e/X2, then W= CiC0sh/3y + C2cosyy. 

(13) 

(14) 

(15) 

and y = a-\/y/K\1+l-e-l. 

3 Determination of Buckling Load K and Buckling 
Mode 

In order to determine the buckling load and the correspond
ing buckling mode, conditions along the edges between the 
panels of a tube have to be imposed. In LR, such edge con
ditions were obtained by continuity considerations between 
panels and then simplified according to the symmetry or an
tisymmetry about the diagonals of any cross-section of the 
tube. The buckling mode corresponds to antisymmetric edge 
conditions in most cases except for very short tubes, therefore 
only these edge conditions will be considered in the present 
paper. These are expressed as follows: 

w = 0 
v+w = Q 
My = 0 
Ny-Ty = 0\ 

along y = b/2 (16) 

where Ty = Qy + Mxy<y is the equivalent transverse shear force 
of thin plate theory. Edge conditions (16) are imposed at the 
edge>> = b/2 while those at.y = - b/2 are satisfied automatically 
by the symmetric nature of displacement fields (8), (10), and 
(13)-(15) about .y = 0. 

In applying the above edge conditions it should be noted 
that there is more than one form of field both for the in-plane 
and out-of-plane displacements, any combination of them giv
ing an admissible mode for buckling. Which of the admissible 
modes gives the buckling mode is determined by which results 
in the lowest value of buckling load K. Substituting any of the 

admissible modes into edge conditions (16), along with equa
tions (9) or (11), leads to 6 homogeneous equations for A[t 

Az, Blt B2, Ct and C2. The buckling criterion is expressed by 
the nontrivial solution condition for the homogeneous equa
tions. This results in an implicit transcendental equation for 
K, the implicit nature being enhanced by the fact that e depends 
on K for a general strain-hardening law. Therefore, a com
putational solution scheme has to be employed for each of the 
admissible modes. The results show that the form of the buck
ling mode is completely determined by all of the material prop
erties. In particular, the strain-hardening properties influence 
the solution, which reveals the danger in using a perfectly-
plastic material model in the buckling analysis of a square tube 
under axial compression. This is discussed as follows. 

3.1 Perfectly-Plastic Material. For tubes of perfectly 
plastic material, the in-plane displacement components of the 
buckling mode are given by Eqs. (8) and the out-of-plane 
component is found to be in the form of Eq. (13), since this 
corresponds to the lowest value of K of the three forms given 
in Eqs. (13)—(15). Compared with simply-supported plates, the 
minimum value of K is much lower for the panels of a tube 
although it corresponds to the same dimensionless half-wave
length of 1/V2. 

Unfortunately, the corresponding buckling mode gives a 
saddled-shaped surface for the buckled panel, which contra
dicts experimental observations completely—as can be seen 
from Fig. 2, which shows the buckling mode for a typical 
cross-section. It seems that the panels of a tube behave in a 
similar way to plate columns (unloaded edges free). In fact, 
if the expression for Ny is derived from the buckling mode, it 
is found that A^ vanishes identically along the edges 
y= ±b/2 for the axial dimensionless half-wavelength of 
1/V2, and therefore some kind of free edges are produced 
since My and Ty vanish at the same time. The only difference 
is that plate columns tend to buckle into one half-wave along 
the whole length while the panels of a tube would take a number 
of half-waves so that the half-wavelength approaches 1 A/2. 

This unrealistic mode appears only for perfectly plastic ma
terials. It suggests that for the plastic buckling analysis of a 
square tube under axial compression, neglect of the strain 
hardening properties of the material does not lead to physically 
reasonable results. 

3.2 Strain-Hardening Material. For materials with strain 
hardening, no solution for K could be found involving the out-
of-plane mode given by Eq. (13), while the mode described by 
Eq. (14) is related to the trivial mode, K and m both being 
zero. Therefore, the buckling mode is given by Eqs. (10) and 
(15). With this mode the nontrivial solution condition is ex
pressed in Eq. (17) 

sinhi/^sin^ coshi/'flcos^ 

3 3 
4 * * -W-J 

2\j/<p 

0 

-2*j/<p 

(,.,-J) 
- - sinhi/<0sin«50 - - cosrn/-0cos<c>0 - <osinhi/'0sin.p0 ^sinh^0sinp0 

+ ^coshi/>0cosp0 + ipcosh\j/6cos(p9 

0 0 sinh\Wcos^0 cosh^0sin<o0 

0 0 0 0 

s^HH'£'H) 

cosh£0 

H) cosh{0 - I rj + - I cos?;0 

sini;0 

COSTJ0 

= 0 (17) 
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Fig. 2 A typical cross-section of the buckling mode of tubes of perfectly-
plastic material 
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and 7i = V V ^ 2 + l - e - 1 

The buckling load A" can then be obtained using an iteration 
scheme in which the value of the parameter e is adjusted to 
the latest value of K until convergence is reached. 

The above procedure for solving plastic buckling problems 
for tubes is applicable for any type of strain-hardening ma
terial. In order to provide a simple example of the analysis 
and to aid the discussions, attention is confined to a material 
with linear strain-hardening, as shown in Fig. 3. For the plastic 
buckling of plates of this type of material, it is appropriate 
(see Appendix) to define 

-jf. -J— E'/E 
S~9h2'o0/E\-(Et/E)~ ( 1 8 ) 

This parameter encapsulates the contributions of the material 
properties completely. With it, e can be expressed as 

e=l~-
1 

4 1+sK 
(19) 

It is clear from Eq. (18) that the influence of thickness is 
also contained in the parameter s. However, for tubes there 
is another way in which thickness can affect the buckling be
havior. This results from the fourth of Eqs. (16). For the 
purpose of some of the later discussions, it is helpful to in
troduce another parameter sp, at this stage defined by 

s = 0-l 
s=0-05 
s = 0-025 

Fig. 4 Nondimensional buckling load K versus aspect ratio k; 
(a) variation with relative width h(sp = 20), (o) variation with s (h = 20) 

,2 T 1 E,/E 
9 o0/E \-{E,/E) 

(20) 

This allows the material and geometrical properties of the 
tube to be separated. 

4 Results and Discussion for Linearly Strain-Hard
ening Material 

The results for the plastic buckling of square tubes under 
axial compression are obtained by solving Eq. (17) for any 
given material properties and tube dimensions. They show a 
number of interesting features which are discussed in turn as 
follows. 

4.1 Buckling Load. The nondimensional buckling load 
K is plotted in Figs. 4(a) and (b) against the aspect ratio k for 
sp = 20 with a number of different relative widths, h, and for 
h = 20 with a number of different values of 5. The curves given 
can be used for tubes of finite length. In general, K increases 
with s but decreases with h, which is the opposite of the in
fluence of h on the elastic buckling load as described in LR. 
These tendencies are clearly seen from Fig. 5(a) and (b), re
spectively, where curves are presented for long tubes. In Fig. 
5(a) there exists a peak for A" at a certain value of h. This peak 
characterizes the twofold influence of h in the problem. The 
increase of h tends to stiffen the tube by maintaining the edges 
between the panels in straight lines due to the fourth of the 
edge conditions given in Eqs. (16). This effect has been dem
onstrated for the elastic case in LR. However, an increase in 
h or a decrease in thickness will reduce the influence of the 
strain-hardening of the material and therefore, soften the tube, 
as shown in the Appendix for plates where an increase in h 
corresponds to a decrease in s. In reality, the peaks in the 
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Fig. 5 Nondimensional buckling load of long tubes; (a) K versus rel
ative width h for given values of sp, (b) K versus s for given values of 
relative width h 

curves would not affect the buckling behavior significantly, 
since tubes of relative widths which are less than or equal to 
the values corresponding to the peaks are seldom used. There
fore, practically, the former influence of h and K overrides 
the latter. 

4.2 Comparison Between Tubes and Plates. In elastic 
buckling, the results for plates are reproduced by very thin 
tubes. Figure 5(b) also seems to suggest this tendency for plastic 
buckling. Unfortunately, to draw such a conclusion would be 
invalid. This can be verified as follows. As h tends to infinity, 
Eq. (17) reduces to the product of two subdeterminants. 

Fig. 6 Fractional difference between nondimensional buckling load for 
long plates and tubes, t, versus sp for given values of relative width h 

elastic range. In general, the buckling load for tubes is lower 
than that for plates. The difference between them is shown in 
Fig. 6, where e is defined as 

e = (-"plate — -K-tube ) 'Opiate-

If the relative width of the tube is greater than 20, then the 
difference is hardly affected by h. However, the values of e 
are sensitive to sp for materials with small values of sp. 

In the light of the above discussion, the comparison made 
between experimental results and the theoretical results by 
deformation theory and incremental theory for the plastic 
buckling of plates should be reassessed, since the experiments 
reported by Gerard (1957) were conducted on tubes rather than 
on simply-supported plates directly. The agreement between 
such experimental results and the results from deformation 
theory could therefore have been fortuitous. If the experiments 
were carried out by introducing edge conditions nearer to true 
simple supports than those imposed within tubes, the buckling 
loads could be higher than those obtained in tube experiments. 
Thus they might deviate from the result obtained by defor
mation theory towards the results given by incremental theory. 
In order to achieve a full understanding of the plastic buckling 
of plates, further experimental research is suggested. 

4.3 Edge Deflections. As in the elastic buckling case, the 
edges between the panels of a square tube deflect during buck
ling when buckling takes place in the plastic range. The de
flection in plastic buckling is usually larger than that in elastic 
buckling, although the amount is affected by factors such as 
h and sp as shown in Fig. 7(a) and (b), where the relative edge 
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COS770 

1 = 0 (21) 

The vanishing of the second determinant gives the plastic 
buckling condition for plates, but it does not necessarily vanish 
now for tubes. For a given material, sp is a constant and as h 
tends to infinity, s approaches zero, so that e approaches 
1/4 and i/> approaches zero.The first determinant therefore tends 
to vanish. Thus, theoretically, no equivalence exists between 
tubes and plates where plastic buckling is concerned, even for 
arbitrarily thin plates and tubes, regardless of the physical con
sideration that very thin tubes and plates would buckle in the 

deflection, i.e., the ratio of the deflection along the edges to 
that along the center line, is plotted against h and s, respec
tively. Generally, speaking, the smaller the h, i.e., the thicker 
the tube, and the smaller the s, the larger is the edge deflection. 
Large rates of change are apparent for small values of h and 

4.4 Compact Crushing Modes. Compact and noncom-
pact crushing behavior ofsquare tubes under axial compression 
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Fig. 7 Relative edge deflection of long tubes; (a) relative edge deflection 
wversus relative width h for given values of sp, (o) relative edge deflection 
w versus s for given values of relative width n 

have been discussed in LR with reference to the edge deflection. 
However, for most common materials, the value of h, which 
restricts the buckling to occur within the elastic range, would 
not allow sufficiently large edge deflections to lead to a sub
sequent compact mode. Usually a compact crushing process 
has plastic buckling as its first stage (Mahmood and Paluszny, 
1981). Once the buckling is plastic, larger edge deflections than 
those predicted by elastic buckling analysis are produced as 
mentioned previously. This is one reason which favors the 
formation of a subsequent compact mode when the buckling 
is in the plastic range. 

Another reason is the reduction in the half-wavelength of 
the buckling mode. From our earlier work it is known that the 
buckling behavior of square tubes differs from that of plates 
because of the different edge conditions between panels of the 
tube. However, such edge conditions seem hardly to affect the 
longitudinal half-wavelength of the buckling mode as can also 
be seen in the elastic case (see LR). From the calculations made 
in this paper, it is also true that the half-wavelength of the 
buckling mode of tubes is nearly the same as that of plates in 
the case of plastic buckling. Thus, Fig. A2 in the Appendix 
could be used to determine the half-wavelength for long tubes 
buckling plastically, if the material is linear strain hardening. 
For a folding mechanism in a compact crushing process, the 
longitudinal half-wavelength is shorter than the elastic buckling 
half-wavelength and smaller edge deflections are required for 
the same degree of folding deformation. In other words, with 
the same amount of edge deflection, the shorter the half-wave
length, the larger the folding deformation and, therefore, the 
shorter the half-wavelength, the larger the folding deformation 
and, therefore, the easier to develop a compact mode. From 
this qualitative argument, a conclusion about the reason for 
the development of compact crushing modes can be drawn. It 
is due to interaction between the edge deflection and the shorter 

half-wavelength in the early stages of the crushing deforma
tion. 

The reduction in longitudinal half-wavelength has another 
interesting aspect for designers when the tubes are used as 
energy absorbers. In design, if the parameter s is chosen to be 
as small as possible (which can be achieved by using materials 
with a high yield stress and low strain-hardening rate, or by 
reducing the relative width h, while ensuring that the buckling 
occurs in the plastic range and crushing is in a compact mode), 
more folds can be expected, and therefore higher specific en
ergy absorption capacities obtained. 
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A P P E N D I X 

Plastic Buckling of a Uniaxially Compressed Simply-
Supported Plate of Elastic Linear Strain-Hardening Ma
terial 

In Stowell's (1948) theory for the plastic buckling of uniax
ially compressed simply-supported plates (described in Gerard 
(1962)), the following assumptions were made: 
(i) In the prebuckling stage, the plate remains in a uniaxial 
stress state, 
(ii) Buckling takes place entirely in the plastic regime and 
therefore Poisson's ratio is taken to be 0.5 from the incom-
pressibility condition, 
(iii) Since buckling corresponds to a bifurcation in the fun
damental equilibrium path as in Shanley's column, no strain 
reversal takes place. 

Based on these assumptions, the stress-strain relations can 
be obtained 

°x = - EAeex + -ey 

4 ^ / 1 -3Es(-2ex+e} 

1 
^xy ~ ^ ^slfxy (Al) 

where ox, ex, etc., are all increments of deviation from the 
fundamental path. e= l/4 + 3E,/4Es where Es and E, are the 
secant and tangent moduli of the material, respectively, and 
are functions of strain in general. Using the stress-strain re-

. lations, the buckling equation can be written as 

Nx ew>xxxx + 2wtxxyy + wtxxyy -—w>xx = 0. (A2) 

From this, the dimensionless buckling load can be deduced as 

(A3) A:=A2+2+4>. 

Although Stowell's theory has attracted some criticism (Sew-
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ell, 1964), it remains the most popular theory for plates and 
the most common analysis for practical use due to its relative 
simplicity. Equation (A3) is referred to as Stowell's formula. 
Since Es and E, may not be constants but will be related to K 
in general, Eq. (A3) gives K implicitly. 

Equation (A3) has been used extensively in this form. Each 
time it is used, some kind of iteration procedure has to be 
employed to obtain an accurate value oiK, except for perfectly-
plastic materials where the implicit nature of Eq. (A3) is elim
inated due to the fact that E, = Q. 

While no attempt will be made here to improve this formula 
in the general case, it is possible and also helpful to simplify 
the procedure for those materials which are well described as 
being linearly strain hardening. This behavior actually covers 
a large category of materials in practical use. 

The stress-strain relationship for a linear strain-hardening 
material is characterized by parameters E, E,, and a0 as is 
shown in Fig. 3. The thickness t of the plate is also involved 
in the relationship between K and Es. Therefore, all of the 
parameters E, E„ a0, and t could affect the plastic buckling 
behavior of such plates. In order to discuss their influence, 
extensive calculations are required. However, a careful re
examination reveals that it is possible to merge all these pa
rameters into a single properly defined dimensionless param
eter which makes the above discussion very straightforward 
for the linearly strain-hardening case. 

Under the assumptions made, K can be expressed as follows 
in terms of the axial strain e,. 

Nxb 9h2 oY 9h2 

ir Ds ir Es ir 

This equation, along with the stress-strain relationship 

ex = — + —(<Jx-o0), 
E E, 

gives 

where 

E,/Es=\-
1 

s = 
1 

1+sK' 

E,/E 

W a0/E \-{Et/E) 

By introducing the parameter s, Eq. (A3) becomes 

K=\2 + 2+[ 1 -
4 1+sKj X2' 

Rearranging, we obtain an explicit expression for K 

1 1 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

K=-
1 x2 „ 1 1 X + 2 + 75 

X J 

x , + 1 +s>-;) , + ; (x , + I +s' . (A9) 

The other root is discarded since it gives a negative value of 
K and is therefore inadmissible. This expression only contains 
the half-wavelength X and the parameter s and is clearly very 
convenient to use. 

It is interesting to note that as s approaches infinity and zero 
corresponding to elastic and perfectly plastic materials, re
spectively, the above expression gives the correct expressions 
for K in these limiting cases. 

Fig. A1 Nondimensional buckling load Kversus aspect ratio k for given 
values of s for a simply supported plate 

09 

07 
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Fig. A2 Nondimensional half-wavelength X for long, simply supported 
plates versus parameter s 

To discuss how K changes with s, we examine the derivative 
of K with respect to s. 

dK 

ds'' 
1 -

\2 + 2-± + -
2X2 s 

Xz + 2 + ^ - x2+2+i? 
(A10) 

For any practical value of X satisfying 0 < X < V 5 , we have 

dK/ds>0. 

Therefore, practically, AT increases withsmonotonically, which 
is clearly seen in Fig. Al . In view of this and reviewing expres
sion (A7) for the parameter s, it can be concluded that K 
increases with increase in thickness and with increasing tangent 
modulus and decreases with increases in the yield stress. 

For long plates, K takes the minimum value with respect to 
X which can be found from 

dK/d\ = 0. 

The minimized K and the corresponding X are also affected 
by s. These are shown in Fig. 5(b) and Fig. A2, respectively. 
As s varies from zero (perfectly plastic) to infinity (elastic), K 
takes values from 3 to 4 and X from l/S/2 to 1. Higher rates 
of increase of K and X with s are found for lower values of s. 
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A Multiaxial Stochastic 
Constitutive Law for Concrete: 
Part I—Theoretical Development 
An incremental three-dimensional constitutive relation for concrete has been de
veloped. The linear anisotropic and path-dependent behavior is modeled by updating 
the stiffness matrix at each load increment. The material is assumed incrementally 
elastic and the six elastic moduli Eu, E12 E33 are expressed in terms of both 
the tangential hydrostatic and deviatoric stiffness whereas the three tangential shear 
moduli are expressed in terms of the deviatoric stiffness only. The hydrostatic and 
deviatoric stiffness are determined from uniaxial stress-strain relationships by em
ploying the space truss concept. The unaxial stress-strain relationships are in a sense 
the stress-strain relationships of the members of the truss, and they were based on 
a rheological stochastic model developed earlier. The predictions of the model com
pare favorably with experimental data reported by various investigators. Complex 
loading paths are reproduced with acceptable accuracy as is demonstrated in the 
second part of this paper. 

Introduction 
If the sophisticated methods that are available today are to 

be employed in the analysis of concrete structures, models that 
capture and reproduce with accuracy the complex character
istics of concrete behavior are essential. Since the accuracy of 
any analytical method is limited by the accuracy of the model 
that is employed, the development of modeling should be par
allel to the increase in sophistication of the analytical tools. 

There are a number of constitutive models for concrete avail
able in the literature. Among those, the endochronic theory 
(Bazant and Bhat, 1976; Bazant and Shieh, 1978; Bazant and 
Shieh, 1980) is perhaps one of the most comprehensive models, 
but the number of parameters involved is large and they are 
not easily determined. The total strain theory models (Ahmad 
and Shah, 1982; Ahmad et al., 1986; Ottosen, 1979) are re
stricted to path-independent loadings, while hypoelastic models 
(Darwin and Pecknold, 1977a; Elwi and Murray, 1979; Gerstle, 
1981) can approximate path dependency. Some fracture me
chanics models (Maekawa and Okamura, 1983; Van Mier, 
1986) have also been proposed for concrete and geomaterials 
but their predictions for complex loadings are not yet satis
factory. 

A number of models known as network models (Baker, 1959; 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for presentation at the 1992 ASME Summer Me
chanics and Materials Meeting, Tempe, AZ, Apr. 28-May 1, 1992. 

Discussion on this paper should be addressed to the Technical Editor, Pro
fessor Leon M. Keer, The Technological Institute, Northwestern University, 
Evanston, IL 60208, and will be accepted until four months after final publication 
of the paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received 
by the ASME Applied Mechanics Division, Aug. 25, 1988; final revision, Sept. 
25, 1991. 

Paper No. 92-APM-13. 

Burt and Dougill, 1977; Papadopoulos, 1984; Reinius, 1965) 
have been proposed in the past, but their accuracy was not 
always satisfactory. Although a random network has the po
tential to duplicate heterogeneous material behavior, it is dif
ficult to develop accurate models for brittle materials. 

A stochastic model (Fafitis and Shah, 1984; Fafitis and Shah, 
1986) with continuous fracturing elastoplastic elements has 
been developed recently, and the present work is a generali
zation of this model. The model is based on incrementally 
linear elastic (hypoelastic) behavior of the material. The con
stitutive equation has a small number of material constants 
which can be determined from uniaxial experiments. 

Concrete is a material that develops microcracks at a very 
early age even under no externally applied stress. Because these 
microcracks have a random orientation, their effects to the 
macroscopically observed response to external load is not ori
ented, and the material can be considered initially isotropic. 
However, when it is subjected to external load, it develops 
cracks which do not have the random orientation of the mi
crocracks and the material, depending on the magnitude of 
loading, can no longer be assumed isotropic. A better ap
proximation at this stage is to model the concrete as ortho-
tropic. There is a large number of constitutive relations that 
are characterized by an orthotropic tangential stiffness or com
pliance matrix (Bathe and Ramaswamy, 1979; Darwin and 
Pecknold, 1977b; Elwi and Murray, 1979; Isenburg and Adam, 
1970; Liu et al., 1972). One of the problems associated with 
this modeling is the determination of shear moduli. In the past, 
the shear moduli have been expressed in terms of Young's 
moduli and Poisson's ratios. The drawback of the above ap
proaches is that the shear moduli, being functions of Young's 
moduli and Poisson's ratios, are independent of shear strains 
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(1) 

(or shear stresses). In this investigation the shear moduli are 
considered as functions of shear strain. The material is assumed 
initially isotropic. 

Tangential Elastic Moduli 
The general incrementally linear stress-strain relation for an 

orthotropic elastic material can be written in a matrix form 
with, at most, nine independent elastic moduli (Chen and Sa-
leeb, 1982) as follows: 

da, 

da2 

da3 

dr,2 

dr23 

,dr3,. 

where da and de are normal stress and strain increments; dr 
and dy are shear stress and strain increments; and Ey and Gy 
are tangential elastic moduli, which will be called in the sequel 
normal and shear moduli, respectively. 

To express nonlinear stress-strain relationship as well as path 
dependency, the normal moduli are expressed as functions of 
the total normal strains 

Ey=fy(e,,e2,e3)=fy(ek). (2a) 

The strain can be decomposed into two parts: the octahedral 
part, e0, associated with change in volume and the deviatoric 
part, ek, associated with change in shape. Thus, we can write 
the tangential normal moduli as 

Eij=fij{e0,ek) (2b) 

where e0 = (ei + e2 + e3)/3, ek = ek - eot k = 1,2, 3. 

The decomposition in volumetric (octahedral) and deviatoric 
components can be modeled by a space truss as shown in Fig. 
1. The diagonal members model the volumetric component 
and the normal members the deviatoric. The shear moduli Gy 
will be expressed as functions of shear strains in the following 
section. 

The advantage of this modeling is that, as it will be shown 
in the sequel, the triaxial behavior of concrete can be modeled 
by combination of uniaxial models and the stiffness of the 
members can be calculated at each strain increment from ap
propriate uniaxial stress-strain relationships (Ahmad et al., 
1986; Hognestad, 1951; Saenz, 1964; Sargin, 1971). There are 
a number of uniaxial stress-strain relations for concrete avail
able in the literature that might be used for the uniaxial mod
eling of the truss members. In this investigation, a recently 
developed stochastic model which has the facility for strain 
history and unloading is employed (Fafitis and Shah, 1986). 

Because of the symmetry of the model only part of the 
structure is shown in Fig. 2. The axial stiffness of the normal 

members is AjSj and the stiffness of the diagonal members is 
A0S0. In order that this model reproduce the experimentally 
observed behavior of concrete, S,- and S0 are related to devia
toric and hydrostatic (octahedral) stiffness as will be discussed 
later. 

For a unit displacement in direction 1 at point 0, the cor
responding forces in direction 1, 2, 3 are 

AjSj 1 A0S0 
/ l = "T + 3-T 
fi —f%— 

£ A0S0 

3 /„ 

(3a) 

(36) 

dfx 
df2 

df3 

S, + S0/3, 

S0/3, 

So/3, 

S0/3, 

S2 + S0/3 

S0/3, 

S0/3 

S0/3 

S3 + S0/3 

do, 

db2 

dd3 

where l0 = VJ/. 
Similarly, from the unit displacement in direction 2 and 3, 

we can get the corresponding forces. For the stress-strain re
lationship we can select / = 1, and then displacements are 
equivalent to strains. For convenience we take At = 1 and A0 

= yjl. Then Ai/l = Ao/l0 = 1 and the incremental force 
(stress)-displacement (strain) relationship can be written in 
matrix form 

(4) 

where dft and dbj are incremental nodal forces and nodal dis
placements in the /'-direction. 

The required stiffness of the normal and diagonal members 
of the truss of Fig. 2 will be defined later. The derivation of 
the appropriate formulas of the stiffnesses of the truss members 
is based on the assumption that the normal moduli can be 
expressed as the sum of two functions, h and gy. The first 
function depends on both the volumetric and deviatoric strains 
whereas the second function depends on deviatoric strains only. 
Therefore, the normal moduli can be written as 

Ey = h(e0,ek)+gy(ek). (5) 

From the first row of Eq. (1), after substituting Ey from 
Eq. (5) we have 

da, = [g„ (ek)+h(e0,ek)]de, + [g,2(ek) + h(e0,ek)]de2 

+ lgn(ek)+h(e0,ek)]de3 (6) 

substituting de, = de0 + deh we get 

da, = [g 11 (ek) +g,2(ek) +g,3(ek)]de0 + 3h(e0,ek)de0 

+ gn(ek)de,+g,2(ek)de2 + g,3(ek)de3 

+ h(e0,ek)(de, + de2 + de3) (7) 

where de, + de2 + de3 is the summation of incremental de
viatoric strain, which is zero. Letting de, + de2 + de3 = 0, 
in Eq. (7) we have 

da, = [gu(ek) + gl2(ek) + g,3(ek)]de0+ 3h(e0,ek)de0 

+ gn(ek)de,+ gi2(ek)de2 + g,3(ek)de3. (8) 
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It is assumed in the following derivation that the stress in
crement in direction 1 (do{) caused by deviatoric strain incre
ments in direction 2 and 3 (de2, de3) can be ignored. Therefore, 
we assume 

giJ = 0 for i*j. (9) 

Equation (9) shows that the functions gy exist only in diagonal 
terms. Since gy = 0 for /' jt j , we can drop the second index 
for gij (e.g., gu = g\, etc.). Substituting Eq. (9) into Eq. (8), 
we get 

dai=gl(ek)(deo + dei)+3h(e0,ek)de0. (10) 

Substituting de0 + dex '= de{ and de0 = (dex + de2 + 
de3)/3, we get 

doi = [gi(ek) + h(eB,ek)]dei + h(e0,ek)de2 + h(e0,ek)de3. (11) 

By similar reasoning from the second and third rows of Eq. 
(1) we can write the relations of normal stress and strain in
crements as follows: 

do\ 

da2 

da3 

g\(ek)+h(e0,ek),h(e0,ek),h(e0,ek) 

fi(e0,ek),g2(ek)+h(e„,ek),h(e0,ek) 

h(eo,ek),h(e0,ek),g3(ek)+h(eo,ek) 

dtx 

de2 

de3 

(12) 

Comparison of Eqs. (12) and (4) indicates that the functions 
gi and h are related to the stiffness of the members of the space 
truss of Fig. 2. The diagonal members have stiffness SoA0/l0 

= 3h and the normal members have stiffness S^,/ / , = g,. 

Determination of g,{ek) and h(eotek) 

The tangential deviatoric and hydrostatic stiffnesses will be 
determined from uniaxial stress-strain relations. Considering 
uniaxial stress in direction 1 {da2 = do3 = 0), we have 

do0 = -doh 

Since de2 = de3 = —vdeit we can write 

de0 =—-— dei 

(13) 

(14) 

where v is a function of e,-. From Eq. (13) and Eq. (14) we get 

da0 1 do] 

de„ 
(15) 

1 — 2v de\ 

Note that all variables of Eq. (15) depend only on uniaxial 
strain ei. Eq. (15) can be written as 

K0(ei)=-^—El(e1) (16) 
1 — 2c 

where K0 is the hydrostatic tangential stiffness (da0/de0) and 
E, is the uniaxial tangential stiffness {do\/de{). We also have 

and 

doi 2 
dsi=dai—— = - doi 

del=-{\ + v)dti. 

From the Eqs. (17) and (18) we can get 

dsi 1 do\ 

de\ 1 + v de{' 

and Eq. (19) can be written as 

1 
Ai(e,) = Et(e,) 

where K: is the deviatoric tangential stiffness (ds/de,). 

(17) 

(18) 

(19) 

(20) 
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Fig. 3 Comparison of tangential Poisson's ratio with experimental data 

The significance of Eqs. (16) and (20) is that the functions 
K„ and Kt are related to the uniaxial stress-strain relationship 
which can be obtained experimentally with relative easiness or 
approximated by one of the available uniaxial models. 

The tangential Poisson's ratio can be approximated by the 
following polynomials to fit existing experimental data (Kupfer 
et al., 1969; Schickert and Winkler, 1977; Tasuji et al., 1978; 
Van Mier, 1985) as shown in Fig. 3. 

c(e) = 0.18 for e/ep<0 
Ke) = 0.82(e/ep)

3-4 + 0.18 for 0<e/e p <1.5 
v(e)= -0.82(3-e/epf

A + 6.7 for 1.5<e/ep<3 
v{e) = 6.7 for e/ep>3 (21) 

where ep is the strain at peak stress. 
In order to determine gj(ek), we consider strain increment 

in direction / only. Letting the strain increment in direction 1 
such that de/ = x, de2 = de3 = 0, we get from Eq. (12) 

doi=(g\ + h)x 

da2 = daihx. (22) 

The octahedral stress increment is 

d<j0 = (l/3gi + h)x. (23) 
The component of the deviatoric stress increment in direction 
1 is 

dsi = 2/3gix. (24) 

The octahedral strain increment is 

de0=U3x. (25) 

The component of the deviatoric strain increment in direction 
1 is 

efe! = 2/3*. (26) 

From Eq. (24) and (26) we can write 

Kl{el)=dsi/del = gi(ei). (27) 

Note that gj must be a function of ex only. 

For directions 2 and 3 we can get similar relations. Generally, 

g,(e,)=K1(e,). (28) 

Since A,-(e,-) = E,(ei)/(\ + c(e,)), from Eq. (20) we can write 

g, = g{ei)=Ki(ei). (29) 
In order to determine h (e0, ek) we consider hydrostatic strain 

increment since h(e„, ek) corresponds to diagonal stiffness. 
Considering octahedral strain dti = de2 — de3 = x, from Eq. 
(12) we get 

dox= (g\ + 3h)x 
da2=(g2 + 3h)x 
da3=(g3 + 3h)x. (30) 

The octahedral stress increment is 

da0= 1/3 (gi+g2 + g3)x+3hx. (31) 
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K„ (Eq. 52) 
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Fig. 4 Deviatoric and hydrostatic stress-strain curves 

The octahedral strain increment is 

de0 = x. (32) 

From (31) and (32) the hydrostatic stiffness is written as 

K0(e0) = l/3(gl+g2 + gi)x+3h. (33) 

Substituting Eq. (33) into Eq. (27) we can write 

h(e0,ek) = U3K0(e0) - \/%Kx+K2 + K,). (34) 

In Eqs. (29) and (34) the values of Kit K2, K3 (same as gu 

g2, and g3) for any given deviatoric strain eu e2, and e3 can be 
found if the stress-strain relationship (s - e) is known and 
the value of K0 for any hydrostatic strain can be found if the 
stress-strain relationship (a0 - e0) is known. Therefore, for 
the calculation of the tangential stiffnesses, we need only two 
stress-strain relationships which are one-dimension curves. In 
the present work these stress-strain relationships are taken from 
a recently developed Theological stochastic model, which will 
be discussed in the following section. In Fig. 4, shown sche
matically, are these curves (p0 - e0 and s - e), and the stiffness 
K0, Kh and E, needed for Eqs. (16) and (20). Note that the 
s - e curve is related to the uniaxial curve (or - e) through 
Eq. (24). 

In Fig. 4 the uniaxial curve was calculated using Eq. (51), 
the deviatoric stress-strain curve was calculated using Eq. (20), 
and the hydrostatic stress-strain curve was calculated using Eq. 
(52). 

In linear elastic problems, g, and h are constants having the 
initial values of g, and h at e0 = 0 and e,- = 0 (g(0) and h(0)). 
If the functions (g and h) are constants, then the first row of 
the matrix in Eq. (12) can be integrated to give Hooke's law 
as follows. 

From Eq. (12) we have 

a, = (g(0) + h(Q))ex + h(0)e2 + /j(0)e3. (35) 

Substituting Eq. (29) and (34) into Eq. (35) we have 

a, =Kt (0)e, + [(Ko(0) - (*,(()) + Ai(0) 

+ /sr3(0))/3](ei + e2 + e3). (36) 

Substituting Eq. (16) and (20) into Eq. (36) 
E vE 

ffi = T T ~ e i + / i J _ vi ^ f a + ^ H ) . (37) 
\+v (\+V)(1-2P) 

Note that in linear elasticity, E,(e,) is constant E, and v is also 
constant. Similarly, from the second and third row of Eq. (12) 
we can get 

1 - v v v 

v \ — v v 

v v \ — v 
(\ + v)(\-2v) 

(38) 

Equation (38) is the well-known three-dimensional linear elastic 
constitutive equation in the principal coordinate system. There
fore, the nonlinear model developed in the preceding sections 

yields the generalized Hook's law in principal axes (Eq. (38)) 
as a special case in which g and h are constant, independent 
of the current strain, as it is assumed in the linear theory of 
elasticity. 

Tangential Shear Moduli 
The shear modulus of a transversely isotropic material in 

the (/'-plane can be written (Saada, 1974) 

GU~2 (EU~Eu) (39) 

(the summation convention in Ey is not applicable). Equation 
(39) can be used to determine the upper and lower limit of the 
shear moduli of an orthotropic material. Since Gl2 should be 
equal to G2U from Eq. (39) we have 

Gi2 = ^ (£n-£12) or G,2 = - (£»-£21) (40) 

where En = £22 and £12 = £21 for transversely isotropic 
material, while £11 ^ £22 for orthotropic material. We have 
(from Eq. (12)) 

£ i i=g i + fi (41) 

E22 = g2 + h (42) 

E12 = E2l = h. (43) 

Let gi > g2. If £ n = £22 = g\ + h, we can get an upper limit 
of Gii equal to gt/2, whereas if En = £22 = £2 + h, we can 
get a lower limit of G12 equal to g2/2. We can therefore assume 

1 „ 1 
-g 2 =£Gi2<-£ i (44) 

that is, Gy is a function of deviatoric stiffness and has a value 
between g,/2 and g2/2. From Eqs. (20) and (29) we can get 
the upper limit G"2 and lower limit G\2 of the shear modulus 
G\2\ 

cu_l„ _ E>^) 
12 2 g l 2(1 + Kei)) 

G l 2 - 2 f t - 2 ( l + ,(e2))-

(45) 

(46) 

Based on Eqs. (45) and (46), one can use a value between Gy 
and Gy for shear moduli, and this has been done in the past 
(Bathe and Ramaswamy, 1979; Darwin and Pecknold, 1977a; 
Elwi and Murray, 1979; Isenberg and Adam, 1970; Lin et al., 
1972). However, as it is shown below, in some cases the shear 
modulus defined in this way cannot express the nonlinear be
havior of the material. In Fig. 5(a) is shown a square concrete 
panel subjected to normal stress a0 and in Fig. 5(b) the square 
section ABCD subjected to equivalent shear stress r0 = a0. If 
the material was linearly elastic, the deformations 6\ = 82 can 
be calculated theoretically as shown in Fig. 5(c). If Eqs. (45) 
and (46) are used, a finite element analysis of section ABDC 
(Fig. 5(b)) gives the deformation 61 = 62 as shown in Fig. 5(c). 
Note that although Eqs. (45) and (46) are not linear, the de
formations are very close to linear (Fig. 5(c)). The reason is 
that in the loading case of Fig. 5(b), ei = 0 hence Eqs. (45) 
and (46) do not capture the material nonlinearity. 

In this investigation the shear moduli are assumed 

Gy = \g(ey). (47) 

The deformation of the panel of Fig. 5(a) were calculated by 
the finite element method using Eq. (12) modified for biaxial 
stress. These deformations are plotted in Fig. 5(c). It is clear 
that the nonlinearity is captured by Eq. (12) and the defor
mations 51 and 52 are not equal. Using finite element analysis 
and Eq. (47), the deformations of section ABCD of Fig. 5 (b) 
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Table 1 X values 

(a) Square concrete panel • 
under principal stresses a0 

(mesh of 100 elements) 

(b) Inside section ABCD under 
pure shear stresses \ 
(mesh of 49 elements) 

a: 
w 

1.0 1.5 

DISPLACEMENT (mm) 

(c) Stress - displacement curves 

Fig. 5 Finite element analysis of two panels under equivalent stress 

were calculated and plotted in Fig. 5(c). It is seen that the 
deformation is now nonlinear and lies between the deforma
tions from Eq. (12) as it was expected. 

With Eqs. (41) through (43) and Eq. (47), the tangential 
stiffness matrix can be written as follows: 

Normal 

Moduli 

Xi, Xo 

compressive stress 

tensile stress 

zero stress (plane stress) 

zero stress (uniaxial) 

Shear Moduli 

Compressive Strain 

-1,-1 

-10,-10 

-5.6 

-3.2 

-4.0 

Tensile Strain 

1, 1 

10,25 

1.8 

3.2 

4.0 

Ee 
[(l-exp(-60e0)]- (50) 

The formulas for the uniaxial and hydrostatic stress-strain 
relationships given by Eqs. (49) and (50) are based on a model 
consisting of an infinite number of elastoplastic elements con
nected in parallel. The initial stiffness of all elements is con
stant, but the yielding strain of each one is random with 
exponential distribution. Each element has a limited life de
pending on the total strain that it undergoes. When the total 
strains (in tension or compression) reaches this limit, which is 
also random with exponential distribution, the element frac
tures. Thus for any loading history, the elements fracture con
tinuously, and as a result, the model exhibits peak and strain 
softening under monotonic loading and also hysteric loops and 
path-dependent response under nonmonotonic (e.g., cyclic) 
loading. The constants b and b0 in Eqs. (49) and (50) are the 
constants of the exponential distribution (Fafitis and Shah, 
1984). The tangential stiffnesses are the derivatives of Eqs. 
(49) and (50): 

£, (€ , )=« 1 - (hbeiY exp( - X/6e;) (51) 

K0(e0)=fcxp(-\0b0e0) (52) 
in which a and /3 are material constants to be defined in the 
next paragraphs and X,- and X0 are introduced to account for 
compressive, tensile, and zero stress, and compressive and 
tensile strain as shown in Table 1. 

do\ 

da2 

da-i 

drn 

dr2i 

.dr31. 

g\ + h 

h 

h 

0 

0 

0 

h 

gi + h 

h 

0 

0 

0 

h 

h 

gi + h 

0 

0 

0 

0 

0 

0 

gn/2 

0 

0 

0 

0 

0 

0 

#23/2 

0 

0 

0 

0 

0 

0 

gn/2J 

" * i " 

de2 

de3 

dyn 

dj23 

-dyn. 

(48) 

where g,j = g(eij). Note that the values of g,- and gy are cal
culated from the same function g for different strains. The 
physical meaning of g and h can be interpreted as the stiffness 
of the truss members of Fig. 1. Since all normal stiffnesses are 
initially equal (i.e., equal to the initial value of g) and all 
diagonal stiffnesses are also equal (i.e., equal to the initial 
value of h), the behavior is initially isotropic. However, de
pending on the stress history, the members are strained dif
ferently and the elements of the matrix of Eq. (48) take on 
values depending on the load. Thus, the material behaves as 
a path-dependent material with stress-induced anisotropy. 

Conjunction With Stochastic Model 
The stress-strain relationships of the stochastic model 

(Fafitis and Shah, 1986), which has been selected to simulate 
the uniaxial and hydrostatic stress-strain relationships, are 

a = £ e ( l + | exp(-fee) (49) 

All parameters (a, fi, b, b0) can be determined from unaxial 
stress-strain relationships as follows: The initial Poisson's 
ratio of uniaxial stress (a2 = 0-3 = 0) is defined as i>,„ = - de2/ 
dt\ = -d€}/de\ when e,- tend to zero. From the second row 
of Eq. (12) one can write 

gin + 2hin 

Note that gm is the same in the three principal directions because 
the material is assumed initially isotropic. 

The initial elastic modulus for uniaxial stress (a2 = <J3 = 0) 
is defined as Ein = do\/de\ when e,- tend to zero. From the 
first row of Eq. (12) 

Ei„ = gin + hin(l-2vin). (54) 
Solving for gin and hin Eqs. (53) and (54) give 

gi, 

hin = -

(55) 

(\-2vin){\ + vln) 
(56) 
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From Eqs. (51) and (55), one can write 

cx=E,(0)=Ein. (57) 

Em for concrete may be taken as Ein = 4130yf'c MPa where 
f'c is the concrete compressive strength in MPa (ACI Com
mittee 318). Substituting Eq. (55) into Eq. (34) and from Eqs. 
(52) and (56), we can write 

P = K0(G)=Ein/{\-2Vin). (58) 

Equations (57) and (58) agree with Eqs. (16) and (20) at the 
onset of loading, as should be expected. 

We can calculate b as follows: Since the tangent of Eq. 
(49) is equal to zero at peak we can get, from Eq. (51), 

ip~hb 
where ep is the corresponding strain at peak stress. 

Substituting Eq. (59) into Eq. (49) with E = Ejn and \ , = 
- 1, we can get 

b= - 0 . 5 8 6 9 — (60) 
aP 

where ap is the peak stress which can be taken as the concrete 
strength. 

In order to determine b0 we need the initial stiffness, which 
is equal to j3 (Eq. (58)), and another hydrostatic stiffness at 
any strain. Because E,/(l - 2v) becomes undetermined near 
peak stress, 0.5 ep is used to determine b„. From the uniaxial 

(59) 

compressive stress-strain curve (Eq. (52)) and with X0 

we get 

Ko(0.5ep) = Pexp(p.5epbo). 

Substituting Eq. (58) into Eq. (61), we get 

b„ = 
1 

0.5eD 
In 

£,(0.5ep) 
l-2e(0.5ep) '" \-2v, 

In-

1, 

(61) 

(62) 

where E, (0.5ep) is given by Eq. (51) at e = 0.5ep, 
given by Eq. (21) at e = O.Sep (that is v = 0.26), 

v(0.5ep) is 
and vin is 

given by Eq. (21) at e = 0 (that is v,„ = 0.18). The value of 
ep in Eq. (62) is calculated using Eq. (59). 

Conclusions 
A tangential stiffness matrix to predict multiaxial stress-

strain curves of concrete is proposed. The model is based on 
a space truss where the diagonal members represent hydrostatic 
stiffness and the normal members represent deviatoric stiff
ness. Hydrostatic stiffness and deviatoric stiffness could be 
determined by only three parameters which can be determined 
from a uniaxial compressive stress-strain curve. Those param
eters were peak stress, initial elastic modulus, and tangential 
Poisson's ratio. The peak stress is assumed equal to concrete 
strength, the initial elastic modulus is measured experimentally 
or calculated by available empirical formulas, and the Pois
son's ratio is calculated by a proposed empirical formula. The 
incremental formulation is quite general and proportional as 
well as nonproportional loading with quite complex load path 
can be handled. The predictions of the model compared fa
vorably with the experimental results by various investigators 
(Kupfer et al., 1969; Schickert and Winkler, 1977; Van Mier, 
1986) as it is demonstrated in Part II of this paper. 
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A Multiaxial Stochastic 
Constitutive Law for Concrete With 
Dilatancy: Part II—Comparison 
With Experimental Data 
The salient features and concepts of a model developed in Part I of this paper are 
reviewed. The model is extended to include dilatancy and shear compaction which 
are determined from uniaxial stress-strain relationships. The parameters of the model 
are the peak stress, initial elastic modulus, and tangential Poisson's ratio. The peak 
stress is assumed equal to the compressive strength of the concrete specimen, the 
initial elastic modulus and the Poisson's ratio is calculated by proposed empirical 
formulas. Predictions of the model compare favorably with experimental data re
ported by various investigators. Responses of concrete specimens subjected to pre
scribed triaxial proportional stresses, triaxial proportional strains and stresses, 
hydrostatic plus stress combinations with loading paths on the deviatoric stress plane, 
biaxial compressive, biaxial tensile, and uniaxial tensile loadings are predicted and 
compared with test data. All predictions are satisfactory. 

Introduction 
A three-dimensional constitutive model based on incremen

tally linear elastic (hypoelastic) behavior was formulated pre
viously. The material is assumed initially isotropic, but it 
becomes anisotropic at later stages of loading (stress induced 
anisotropy). In order to express a nonlinear stress-strain re
lationship as well as path-dependency, the elastic moduli should 
be functions of the total strain history. The strain can be 
decomposed into two parts, the octahedral part, associated 
with change in volume, and the deviatoric part, associated with 
change in shape. The motivation for the decomposition in 
volumetric (octahedral) and deviatoric components comes from 
a space truss concept explained earlier. The advantage of this 
modeling is that the triaxial behavior of concrete can be mod
eled by a combination of uniaxial models and the stiffness of 
the members can be calculated at each strain increment from 
appropriate uniaxial stress-strain relationships. The stiffnesses 
of the truss members are equivalent to the hydrostatic and 
deviatoric stiffness of the material. The member stiffnesses are 
obtained from the tangential values of the deviatoric stress-
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strain curve and the hydrostatic stress-strain curve which can 
be determined from uniaxial stress-strain relationships. 

The salient features of the model will be reviewed briefly in 
the following section, and then the model will be used to predict 
some experimental data available in the literature. The dila
tancy of brittle materials, like concrete, is modeled by some 
empirical equations calibrated to fit a large number of existing 
experimental data. 

Review of the Model 
In this investigation, for the uniaxial stress-strain relation

ship, we used a recently developed rheological stochastic model 
which has the facility for strain history and unloading (Fafitis 
and Shah, 1984; Fafitis and Shah, 1986). The model is char
acterized by three parameters: the peak stress, the strain cor
responding to peak stress, and the tangential Poisson's ratio. 
In matrix form the proposed constitutive law is given as fol
lows: 

da\ 

da2 

da-s 

drn 

drn 

,drn. 

+ h 

h 

h 
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0 
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Si + h 
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0 0 

0 0 

0 0 

£12/2 0 

0 g23/2 

0 0 

0 

0 

0 
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0 
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* i 

de2 

de, 

dy,2 

dm 

.dyu. 

da 

do 

da 

0 

0 

. 0 . 

(1) 
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where do,, dr^, de„ and dy,j, are the incremental normal and 
shear stress and strains. The additional incremental stress vec
tor [do] in the right side of Eq. (1) is the dilatancy which will 
be discussed in the following section, and g„ g;y, and h are the 
abbreviations of g(e,), g(e,y), and h(e0, ek), respectively, which 
are defined as 

g(ei)=Ki(ei)=~El 
l + v 

h(e0, ek)-
l:K0(e0)-i{Kl+K2 + Ki) 

(2) 

(3) 
3 ov "' 9 

where AT, and K0 are d'eviatoric stiffness and hydrostatic stiff
ness, respectively. E, is a uniaxial stiffness which is equal to 
the tangential value of the uniaxial stress-strain curve. 

From the uniaxial model we have 

I A : I If-. 
1 

K0(e0) = 

(X/be,)2 

1-2K,-

exp(X,fte,) 

-exp(-XAe 0 ) 

(4) 

(5) 

where Em is the initial elastic modulus and vm is the initial 
Poisson's ratio. E,n may be taken as Ein = AlW-Jfc MPa where 
f'c is the compressive strength of concrete in MPa (ACI Com
mittee 318, 1989). For compressive stress, X,- and X0 are equal 
to ± 1 , for the tensile stress, X; is equal to ±10, while X0 is 
equal to 25. For positive (tensile) strain, X,- and X0 are positive, 
for the negative (compressive) strain, X,- and X0 are negative. 

In Eqs. (4) and (5), b and b0 are probability distribution 
parameters and they are given by the following formulas 

b= - 0 .5869— (6) 

1 

0.5 e, 
In — 

£,(0.5 e„) 
-In 

l - 2 » , > 
(7) 

l -2K0.5e p) 

where ap is peak stress, which can be taken equal to the com
pressive strength/ 'c, and ep is the corresponding strain at peak 
stress which is 

e" = hb- ( 8 ) 

The Poisson's ratio is given by the following empirical equa
tions: 

K<0 = 0.18fore/ep<0 

K<0 = 0.82 (e/ep)
3A + 0AS for 0<e/e„<1.5 

Ke)= -0 .82 (3-e/ep)3-4 + 6.7 for e/ep<0 

K(e) = 6 .7 fo re /e p >3. (9) 

The linear elastic constitutive relations (generalized Hooke's 
Law) is a special case of the model proposed here. The incre
mental formulation is quite general and proportional as well 
as nonproportional loading with any load path can be handled. 

Dilatancy 
From experimental observations it has been found that brit

tle materials, like concrete, exhibit dilatancy, which is volu
metric change under deviatoric stress. Dilatancy, in this 
investigation, is accounted for by adding an extra term in the 
compliance matrix as follows: 

{de)=[F]{da} + \de} (10) 

where [de] is dilatancy component. The stiffness matrix can 
be written as 

[dc)=lS]{de}-[S]{da} (11) 

where [S] = [F]~l. We can write Eq. (11) as 

{da}=[S][de}-{da} (12) 

where [da] = [S]{de}. Note that in Eq. (1) we consider di
latancy due to diagonal components of the stress tensor. Let
ting da* indicate uniaxial dilatancy and if do2 = doi = 0, Eq. 
(1) will give 

da2 = hdei + (g2 + h )de2 + hde3 - da* = 0. 

Substituting 

v = - de2/dei = - de3/de\ 

we get 
da*= (h-2vh-pg2)dei (13) 

If Eq. (13) is plotted for different concrete strengths it can be 
seen from Fig. 1 that the effect of f'c on Eq. (13) is not 
appreciable, therefore for numerical convenience, we express 
uniaxial dilatancy independent of f'c as follows: 

3 

- - 0 . 3 9 + B (14) da* 

del' 

where A = \Q1; B = 5 .5xl0 5 . 
In multiaxial stress we define a relative constant between a 

reference strain increment from the uniaxial stress and an ac
tual strain increment as 

lrfe1l + lrfeil +Ideal „ „ 
* \del\ + \det\ + \deS\ ( ' 

where the asterisk indicates uniaxial values. We assume that 
the dilatancy increment on the right side of Eq.(l) can be 
calculated by 

da(iy) da*(et) 
(16) 

de, T del 

where e* = \\pde* and def is the most compressive longitudinal 
strain increment. Figure 2 shows schematically the relation 
between uniaxial and multiaxial dilatancy. In the following 
section of the effect of dilatancy is shown in Figs. 4, 7, 9, and 
11 where the model is compared with experimental data. 

Comparison with Tests Subjected to Proportional Load
ing 

To determine the stress-strain curves of concrete subjected 
to any arbitrary loading using the model proposed here, one 
needs to know the uniaxial peak stress ap and the Poisson's 
ratio v (e). In the present investigation the Poisson's ratio is 
calculated from Eq. (1). The predicted stress-strain curves are 
compared with experimental data obtained by various inves
tigators in the sequel. In the following figures, negative values 

* 

Fig. 1 Dilatancy and shear compaction of uniaxial compressive stress 
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Uniaxial Dilatancy 
(Eq. 14) 

Fig. 2 Relationship between uniaxial and multiaxial dilatancy 
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Fig. 5 Comparison of analytical with experimental results of propor
tional triaxial loading (o2foi = 0.1, aja^ = 0.1, perpendicular) 

Fig. 7 Comparison of analytical with experimental results of propor
tional strain and stress (e2/e, = - 0 . 2 , ojoi = 0.05, perpendicular) 

indicate compressive stresses or strains, while positive values 
indicate tensile stresses or strains and e„ indicate volumetric 
strain (e„ = ei + e2 + e{). 

Van Mier (1986) tested 100 mm cube concrete specimens 
under monotonically increasing loading. The loading was pro
portional; that is, the ratios <r2/°"i and <r3/<7i were kept constant. 
These experiments were conducted under displacement control 
in the major loaded direction (<TI). and load control in the other 
two directions. In concrete, weaker planes are developed under 
the larger aggregate particles as shown in Fig. 3. 

These weak planes are the result of bleeding, shrinkage, and 
temperature difference during the hardening process of the 
concrete and they are parallel to the bottom of the specimens 
(perpendicular to the casting direction). In the experiments 
conducted by Van Mier the loading is distinguished in parallel 
and perpendicular to the direction of casting. The response 
predicted by the model is compared with the experimental 
results reported by Van Mier in Figs. 4 through 9. In Fig. 4 
the loading was o-2/<Ji = 0.1 and o-3/ai = 0.05, and was com-

. pressive parallel to the direction of casting. The volumetric 
strain curve without dilatancy is shown in this figure for com
parison. In Fig. 5 the loading was â /o-i = 0.1 and 0-3/0-! = 0.1, 
and o"i was perpendicular compression. In Fig. 6 the loading 
was a2/o"i = 0.33 and 0-3/0"! =0.05, and ox was perpendicular 
compression. 

In the uniaxial compressive tests of 100 mm cube, the peak 
stress, ap, was -41 MPa for parallel loading and -42 MPa 
for perpendicular loading with regard to the direction of cast-
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Fig. 8 Comparison of analytical with experimental results of propor
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Fig. 9 Comparison of analytical with experimental results of propor
tional strain and stress (t2/(i = 0, oja, = 0.05, perpendicular) 

ing. The initial elastic modulus, Ein was approximately 30,000 
MPa. The parameters of the model were calculated as follows: 
For parallel loading, 6 = 434, 6o = 440; and for perpendicular 
loading, 6 = 429, b0 = 434. 

Another set of tests performed by Van Mier using 100 mm 
cube concrete specimens is the following: The strain in direction 
2 was proportional of the strain of direction 1 and the stress 
of direction 3 was proportional to the stress in direction 1. 
Therefore, the ratios e2/ei and <j3/rji were kept constant. 

In Figs. 7, 8, and 9, we plot eu e2, and e3 versus ou and also 
o2 versus ei. For example, in Fig. 7 at o\ = - 62.7 MPa ( - 9101 
psi), e, is -0.00415 and a2 is -6.4 MPa (-925 psi). In Fig. 
7 the loading was e2/e{ =

 _ 0 - 2 and 0-3/0-1 = 0.05 while ox was 
perpendicular compression. In Fig. 8 the loading was 62/61 = 0.1 
and 03/171 = 0.05 while o\ was perpendicular compression. In 
Fig. 9 the loading was e2/«i =0 and 03/01 = 0.05 while o} was 
parallel compression. 

Comparison with Tests Subjected to Nonproportional 
Loading 

Schickert and Winkler (1977) performed multiaxial tests in 
several laboratories using 100 mm cube specimens which were 
cast in one place. The purpose of testing at different labora
tories with different equipment was to eliminate the influence 
of the testing machines. Triaxial loading was performed by 
first subjecting the cube to a specified hydrostatic stress and 
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then to stress combinations which followed one of the three 
stress paths shown in Fig. 10. (Those loading paths are on the 
deviatoric stress plane at specified hydrostatic stress.) 

Figure 11 shows the comparison of tests on path 1 (Fig. 
106), with hydrostatic stress -25.5 MPa (-3698 psi) and a2/ 
ff] = 0-3/0-] = - 0.5 (o-j compressive). The analytical curves, with
out dilatancy, are also shown in this figure for comparison. 
In Fig. 12, the tests are on path 2 with hydrostatic stress - 42.5 
MPa (-6162 psi) and o-2/ffi = 0, o3/oi= -1 (ô  compressive). 
In Fig. 13 are shown tests on path 3 in which the hydrostatic 
stress is -42.5 MPa (-6162 psi) and o-2/o-i = l, a3/ai= -2, 
while <TI is compressive. For the uniaxial compressive tests of 
the 100 mm cube peak stress, ap was equal to -30.6 MPa 
(-4438 psi). The initial elastic modulus was calculated 24840 
MPa (3602 ksi). The parameters of the stochastic model were 
calculated as follows: b = 476, 60 = 483. The analytical curves 
exhibit a somewhat ductile trend than do the experimental 
curves. However, the overall response is satisfactory. 

Comparison with Tests Subjected to Tensile Loading 
The three-dimensional model previously presented can sim

ulate biaxial loading behavior with the following adjustment 
of X values: If octahedral stress is compressive, X= ±1.8; if 
octahedral stress is tensile, X = ± 5.6. Uniaxial loading behavior 
can be simulated with X= ±3.2. 
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Fig. 16 Comparison of analytical with experimental results of uniaxial 
tensile loading 

In Figs. 14, 15, and 16 the results are shown of the biaxial 
and uniaxial tests conducted by Kupfer et al. (1969). These 
results are compared with the predicted values of the triaxial 
model developed here. The specimens were 200 x 200 x 50 mm 
concrete prisms subjected to biaxial stress combinations with 
"brush bearing platens." For the tensile tests, the filaments 
were glued to the concrete. 

In Fig. 14 a proportional compressive loading <J2/O\ = 0.52 
was applied. The value of X3= 1.8 was used for zero stress in 
direction 3. In Fig. 15, the proportional tensile loading was 
ot/o\ =0.55. The value of X3 = 5.6 was used for zero stress in 
direction 3. In Fig. 16, a uniaxial tensile stress ax was applied, 
and X2 = X3 = 3.2 was used for the stress directions 2 and 3. 

From the uniaxial compressive test of the prism, the peak 
stress ap was 32 MPa (-4650 psi). The initial elastic modulus 
was calculated 26800 MPa (3886 ksi). The parameters of the 
stochastic model were calculated as follows: b = 490, b0 = 497. 

Conclusions 
Although in some cases the analytical curves exhibit a some

what less ductile trend, overall predictions of the model com
pared favorably with experimental results. The comparisons 
show that the developed model can handle multiaxial com
pressive and tensile behavior under loadings of proportional 
stress, proportional strain and stress, and nonproportional 
stress. Dilatancy and shear compaction could be determined 
from uniaxial stress-strain relationship and then generalized 
to multiaxial behavior. The only input parameter was the com-
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pressive strength of the concrete. Then the initial elastic mod
ulus was calculated by the formula adopted by the American 
Concrete Institute using the concrete strength only, and the 
Poisson's ratio was determined by a proposed empirical for
mula. 
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Asymmetric Shielding in Interfacial 
Fracture Under In-Plane Shear 
The toughness of a glass/'epoxy interface was measured over a wide range of mode 
mixes. A toughening effect was associated with increasing positive and negative in-
plane shear components. Optical interference measurements of normal crack opening 
displacements near the crack front and complementary finite element analyses were 
used to examine near-front behavior during crack initiation. Estimates of the tough
ening based on plastic dissipation, bulk viscoelastic dissipation, and interface asperity 
shielding did not fully account for the measured values. The results suggest that the 
inelastic behavior of the epoxy, frictional, and, perhaps, three-dimensional effects 
should be considered. 

1 Introduction 
Interfacial crack growth occurs in a number of applications 

of technological importance. Because of the fact that the frac
ture path is constrained irrespective of the orientation of the 
globally applied loads and also because of the mismatch of 
material properties across the interface, crack growth is in
herently mixed mode. Critical and subcritical crack growth 
must then be governed by some combination of mode I, II, 
and III fracture parameters. The simplest approach, using one 
parameter, seeks to determine an effective parameter that can 
account for all mode mixes in a unifying manner. This is 
particularly useful for subcritical crack growth where corre
lations of crack growth rates fall on one curve for all mode 
mixes when the proper parameter is found. An alternative is 
to consider a two-parameter approach where one parameter 
represents the mode mix or direction and the other a magni
tude. For critical crack growth, the magnitude will generally 
be a function of mode mix. The form the function is usually 
determined experimentally but may, as mechanisms are better 
understood, even be predicted. 

The most common approach for examining interfacial crack 
initiation has been to consider the interfacial fracture tough
ness, Gc, as a function of the fracture mode mix. The various 
methods that have been used over the years to obtain various 
degrees of mode mix were summarized in a previous paper 
(Liechti and Chai, 1991). In the first study of interfacial tough
ness as a function of mode mix, Malyshev and Salganik (1965) 
found that the toughness of a plexiglass/epoxy interface was 
independent of mode mix. The only other example of a bi-
material combination with a constant toughness was provided 
by Takashi et al. (1978). The first evidence of a toughening 
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effect as the relative amount of shear mode was increased came 
from some experiments with adhesively bonded scarf joints 
(aluminum/epoxy) that failed adhesively (Trantina, 1972). 
Similar trends were observed by Anderson et al. (1974a) using 
cone, blister, and peel specimens. They suggested (1974b) that 
the noted increase in toughness with increasing shear was due 
to microbranching of the crack into the weaker medium be
cause SEM micrographs revealed a concomittant increase in 
fracture surface roughness. Plastic and viscoleastic dissipation 
effects were also cited as possible contributors. Large-scale 
yielding was in fact noted in some experiments conducted by 
Mulville et al. (1978) who made use of a single aluminum/ 
epoxy specimen subjected to multiaxial loads. Liechti and Han
son (1988) detected an increase in the degree of small-scale 
yielding and toughness with increasing mode II component in 
glass/epoxy blister specimens by measuring normal crack 
opening displacements (NCOD) using crack opening interfer-
ometry (Liechti and Knauss, 1982a). Although the increase in 
toughness was not linked quantitatively to the increase in plas
tic dissipation, some recent work by Argon et al. (1989) and 
Gupta et al. (1989) suggests that plastic dissipation, even in 
mode I, can be a substantial component of the interfacial 
toughness. 

A more recent use of the multi-specimen approach for frac
ture toughness measurements was summarized by Cao and 
Evans (1989). An increasing toughness with shear component 
was again detected. It was linked to an asperity shielding effect 
(Evans and Hutchinson, 1989) due to the initial roughness of 
the interface. Mulville and Mast (1975) found that rougher 
interfaces linearly increased toughness for one mode mix in 
crack growth that replicated the interfacial roughness. Inter
estingly, it was found that a 500 Angstrom layer of epoxy 
remained on the aluminum substrate. Rosenfeld et al. (1990) 
have recently added a micro-indentation technique to the array 
of mixed-mode interfacial fracture property specimens that 
have been developed. The results were consistent with those 
obtained from other experiments they conducted using glass/ 
epoxy cantilever beam and four-point flexure (Charalambides 
et al., 1989) specimens. Another recent development has been 
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made by Wang and Suo (1990) who used a single specimen, 
the brazil nut sandwich, loaded at various orientations to in
vestigate the toughness of various interfaces. Finally, the con
cept of using the shapes of delamination fronts to examine 
mode III toughening effects has recently been exploited by 
Jensen et al. (1990), using the straight cut test. Further ex
ploitation of this concept may be facilitated by making use of 
a simplified analysis for extracting three-dimensional mode 
mixes from curved delamination fronts that has been recently 
proposed by Chai (1990). 

There has been relatively little examination of the effect of 
mode mix on subcritical crack growth. Gent and Kinloch (1971) 
used a number of different test pieces, with an elastomer on 
mylar, to examine time-dependent crack growth. The depend
ence of the adhesive fracture energy on an effective crack 
propagation velocity that accounted for viscoelastic effects was 
the same for all test pieces. The mode mix was not explicitly 
extracted and may not have differed to the degree that was 
expected. However, mode-mix independence was established 
for an elastomer/glass specimen under biaxial loads when a 
vectorial crack opening displacement parameter, that ac
counted for measured finite deformations, was used to cor
relate crack velocities (Liechti and Knauss, 1982b). Near-tip 
crack opening displacements were also used (Chan and Dav
idson, 1989) to extract local stress intensity factor changes, 
AK, under cyclic fiber matrix debonding (alumina/magnesium 
alloy). An effective AK parameter, based on the total energy 
release rate or /-integral, accounted for mode-mix effects. 
However, the /-integral did not serve as an effective mixed-
mode fracture parameter in some recent experiments with en
vironmentally assisted crack growth in rubber to metal bonds 
(Hamadeh et al., 1989; Lin, 1989 and Adamjee, 1989). It was 
found (Adamjee, 1989) that crack growth velocities for a given 
/-value were strongly dependent on crack opening angle to the 
extent that no propagation occurred under globally applied 
shear loads. 

The purpose of the work presented here was to examine 
interfacial crack initiation over a wide range of mode mixes. 
The analysis and development of a suitable specimen and bi
axial loading device have already been described (Liechti and 
Chai, 1990). This paper will present the results and analysis 
of a series of experiments that were conducted with various 
combinations of tensile and positive or negative shear loads. 
Indications are that the toughening effect is dependent on the 
sign of the shear component. 

2 Analysis of Individual Experiments 
The specimen that was used for the crack initiation exper

iments was the edge-cracked bi-material strip made of glass 
and epoxy (Fig. 1). The epoxy, a modified bisphenol (Araldite 
502) that had been mixed with an amido-amine hardener (Ar
aldite 955), was cast directly to the glass and cured at room 
temperature for at least a week. The initial crack was produced 
by inserting a razor at the interface and wedging it open to a 
length of approximately 6h. When the specimen was viewed 
under crossed polars, there was no evidence of residual stresses, 
presumably due to the long, room-temperature cure. The spec
imen was placed in a specially developed bi-axial loading device 
that applied displacements along the clamped boundaries, x2 

= ± h. Bond-normal displacements, v0, were applied along Xi 
= h, whereas bond-tangential displacements, u0, were applied 
to the glass along x2 = - h. The actuators consisted of mi-
crostepping stepper motors and preloaded ball screws that were 
controlled by a personal computer so that complex applied 
displacement histories could be prescribed. The reactions nor
mal and tangential to the interface were also acquired and 
recorded by the computer. The NCOD along the crack front 
were also measured by introducing monochromatic light 
through the glass and resolving with a microscope the inter-
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1 
^ , v i 

^ 2 . V 2 

^ 

— Ui(x,.h) = (0 

EPOXY 

GLASS 

Vo) 

-Ui(x,,-h) = (uo,0) 

w=178mm h= 12.7 mm 

Fig. 1 The edge-cracked bi-material strip specimen 

ference fringes produced by the beams reflected from the crack 
faces. The interference fringes were recorded on a video system 
for subsequent data reduction using digital image analysis pro
cedures. 

Under bond-normal applied displacements, Atkinson (1977) 
showed that the energy release rate, G, for the bi-material strip 
was given by 

G = (1 -2^) + ( l - • 2 » 2 ) 

/*i(l - vi) /*2(1 - c2) 
(1) 

where the elastic properties are defined in Fig. 1. 
Simple energy arguments, for sufficiently long cracks, yield 

• l 

G = 
1 1 
—+ — 
Mi M2 

(2) 

for bond-tangential loadings. 
The mode mix or mixity, ^, was defined in terms of the 

complex stress intensity factor, K, and the glass and epoxy 
heights, h, as 

i (lm\Khu] 

[Re[Khk] 

The bimaterial constant, e, is given by 

î  = tan (3) 

6 = S l n «1M2 + Ml 

K2M1 + M2 
(4) 

under plane strain 

Ka = 3 — 4va, a= 1, 2. (5) 

The real and imaginary parts K\ and K2 of the complex stress 
intensity factor were extracted from finite element solutions 
and a conservation integral approach (Yau and Wang, 1984). 
For positive v0, the mode-mix ranges from - 60 deg < \j/ < 
90 deg under positive and negative bond tangential displace
ments (Liechti and Chai, 1991). 

The uniaxial tensile behavior of the epoxy was determined 
under ramp and step loadings. Epoxy coupons were cut from 
the remains of fractured crack initiation specimens. The ramp 
tests were conducted under displacement control at 0.0125 
mm/s. The Young's modulus and Poisson's ratio were deter
mined from load and strain gage measurements whereas an 
extensometer was used to obtain the overall response (Fig. 
2(a)). In specimens that did not fracture prematurely due to 
bubbles, the maximum stress marked the onset of shear band
ing. The large strain response following the drop from the 
ultimate strength was idealized in subsequent analyses as the 
dashed line shown in Fig. 2(a). In order to later investigate 
asymptotic fields, a Ramberg-Osgood fit 

•-§•? G T 
was made of the data up three percent strain. The values of 
the parameters are listed in Table 1. 

Relaxation tests were conducted at temperatures of 21 °C 
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Fig. 2 Tensile response of the epoxy under ramp and step loads 

and 32°C to obtain a limited master curve (Fig. 2(b)). The 
line is an eight-term Prony Series representation of the meas
urements and was used with a constant Poisson ratio assump
tion in viscoelastic analyses of typical load histories in the crack 
initiation tests (Chai, 1990). The analyses confirmed experi
mental observations that the NCOD did not exhibit any vis
coelastic effects under bond-normal and bond-tangential 
displacements. However, there was some relaxation in the re
actions, particularly under bond-tangential displacements, and 
sufficient recovery time was therefore provided between ex
periments. 

A series of crack initiation tests was conducted by applying 
load histories that consisted of various amounts of bond-tan
gential applied displacements, u0 , followed by bond-normal 
applied displacements, t»0c. until crack initiation occurred. A 
detailed analysis of three loading cases is now provided in order 
to provide some insight to later results. Each loading case was 
analyzed using the ABAQUS finite element code, first con
sidering small strains and the epoxy response to be linearly 
elastic. A second, nonlinear analysis was based on finite de-, 
formations and an incremental plasticity model using J2-flow 
theory and isotropic hardening following the measured stress-
strain behavior and the dashed line idealization for large strains 
(Fig. 2(a)). In both cases, any tendency for the crack faces 
to make contact was accommodated by special gap elements, 
so that crack-face interpenetration could not occur. A more 
detailed elastoplastic analysis of an interface crack with contact 
has recently been given by Aravas and Sharma (1991). 

Material 

Epoxy 
Glass 

Table 1 

Young's 
Modulus 
E (GPa) 

2.03 
68.95 

Material properties 

Poisson's 
Ratio 

V 

0.37 
0.20 

<7o (MPa) 

40.4 

Hardening 
Exponent 

(n) 

6 

glass-epoxy Dundurs' parameter a -0.9366 
/3 = -0.1879 

Bimaterial constant e = 0.0605 

Bond-Normal Loading. Bond-normal loading refers to the 
case where u0 = 0 and bond-normal displacements were ap
plied until steady crack propagation occurred. The measured 
and predicted NCOD are compared in Fig. 3(a). There was 
always some initial opening due to a slight preload applied to 
the specimen in order to properly align the optics. The same 
preload was applied in the finite element analysis to ensure 
agreement at u0 = Do = 0 where u0 = u0/u0 and ~D0 = 
VQ/V0 . It can be seen that close agreement was also obtained 
at crack initiation (u0 = 0, v0 = 1) and that a linear analysis 
was sufficient. The asymptotic behavior of the NCOD near 
the crack front was examined in double logarithmic form (Fig. 
3(b)). The measured NCOD resulted in linear profiles having 
slopes of 0.51 and 0.52 at v0 = 0 and 1, respectively. The 
nonlinear and linear analyses agreed down to the 1 ̂ m level 
indicating that the degree of adhesion in this case was such 
that very little plastic deformation was excited in the epoxy 
before debonding occurred. Previous bond-normal loading ex
periments (Liechti and Chai, 1991) had given rise to larger 
scale yielding due to a higher degree of adhesion. The yielding 
had been readily apparent in the bilinear form that the loga
rithmic plots took. 

Because of the degree of magnification that was used to 
observe the crack front region, the process of crack initiation 
was a gradual one, even though the fracture toughness levels 
were relatively low. It was therefore possible to record an 
increase in energy release rate, GR, as stable crack extension 
occurred (Fig. 3(c)). The energy release rates were derived 
from finite element solutions whose NCOD matched the meas
ured values. The first data point (da/a = 0) reflects the initial 
preload that was applied. After the second data point, the time 
interval between the subsequent levels of crack extension was 
0.55 which indicates that the initial slow growth was followed 
by a sharp transition to a higher but steady velocity, which 
was characterized by an essentially constant energy release rate 
or NCOD profile. The critical value of energy release rate, Gc, 
and associated applied displacement, v0c, were taken at the 
instant of the transition to faster, steady propagation. 

Sequential Loading With Positive Bond-Tangential Dis
placements. The example of this loading class that is con
sidered now involved the highest level of positive bond-
tangential applied displacements that was applied in the crack 
initiation studies. The initial NCOD profile (Fig. 4(a), u0 = 
v0 = 0) was matched by an initial bond-normal preload. The 
application of positive bond-tangential applied displacements 
resulted in a decrease in NCOD that lead to the crack-face 
contact shown at u0 = 1, vQ = 0. The extent of contact was 
well predicted but there was some difference between the linear 
and nonlinear solutions with the former being closer to the 
measured NCOD. Bond-normal applied displacements were 
then applied until crack initiation (u0 = v0 = 1). The nonlinear 
solution for NCOD displayed some blunting when compared 
to the linear case but it was insufficient to fully capture the 
measured blunting. However, further removed from the crack 
front, the agreement between predictions and measurements 
was reasonable. 
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The corresponding crack-front asymptotics for this sequen
tial loading are shown in Fig. 4(b). The measured NCOD 
under the slight preload (w0 = v0 = 0) followed a linear profile 
with a slope of mE = 0.55. By the time crack initiation oc
curred, the measured profile had taken on a bilinear profile 
reflecting elastic response in the far field (mE = 0.60) and 
inelastic response in the near field where the slope was mP = 
0.45. The predicted NCOD at initiation had far-field slopes 
mE = 0.65 and 0.7 for the linear and nonlinear analyses, 
respectively. Interestingly enough, the NCOD profile corre
sponding to the linear solution became steeper as the crack 
front was approached instead of maintaining its far-field value. 
The higher slope suggests a weaker strain singularity and the 
possibility that, when the NCOD are examined very close to 
the crack front under bond-tangential applied displacements, 
the crack appears as a notch (Shih, 1990). Note that this was 
not the case for the tangential crack opening displacements 
(TCOD) obtained from the linear solution whose profile had 
a slope of 0.48. 

The near-front slope, mP = 0.45, of the measured NCOD 
did not correspond to the value expected from the power-law 
hardening model of the epoxy stress-strain behavior (« = 6) 
and HRR singular fields where mP = !/(«+ 1) = 0.14. The 

same was true of the near front slopes of the NCOD and TCOD 
solutions obtained from the nonlinear analysis at u0 = ~D0 = 
1. For r < 10 /un, the slopes were, respectively, mP = 0.23 
and 0.36. These results suggest that the inelastic behavior of 
the epoxy under multiaxial stress states needs to be more closely 
examined. 

The resistance curve for this sequential loading is shown in 
Fig. 4(c). It can be seen that some crack extension occurred 
during the tangential loading phase (y0 '= 0) even though the 
crack faces were in contact in the near-front region. As a result 
of the contact, the extent of crack growth up to u0 = 1, v0 = 
0 could only be determined once bond-normal displacements 
had been applied, at which time the crack faces opened to the 
crack length developed under tangential loading and slow crack 
extension progressed until the crack velocity suddenly increased 
to a steady value. The energy release rate value associated with 
the transition was taken to be Gc. The numbers associated with 
the crack extension values that were obtained at 2.0-second 
intervals correspond to the slopes of the bilinear logarithmic 
NCOD profiles. The numbers above the resistance curve are 
the slopes, mE, in the elastic or far-field region. The numbers 
below the resistance curves are the corresponding near front 
slopes, mP. It can be seen that, once the faster, steady crack 
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propagation occurred, the bilinear profile was essentially lost. 
The plastic zone size behind the crack front, rp, was taken to 
be the point of discontinuity in the bilinear profiles. The plastic 
zone size increased under the slow crack extension and then 
dropped noticeably just before the crack velocity increased 
suddenly, after which there was no detectable plastic zone, 
presumably due to rate effects (Needleman, 1990). The max
imum plastic zone size was 141 /mi, much larger than the value 
associated with a purely bond-normal loading, but still small 
scale in nature. The finite element prediction for the value of 
rp atu0=v0= 1 was 164 fim. The fracture toughness for this 
degree of mixity (\j/ = — 58) was 36 J/m2, also much higher 
than the value under purely bond-normal loading. The more 
obvious degree of blunting and stable crack growth is also 
brought out in the degree of stable crack extension under the 
two load cases which increased to da/a = 0.8 x 10"3 from 
da/a = 0.1 x 10"3. 

Sequential Loading with Negative Bond-Tangential Dis
placements. In the sequential loading described here, nega
tive bond-tangential applied displacements were followed by 
bond-normal displacements until steady crack propagation oc

curred. The measured and predicted NCOD are first compared 
in Fig. 5(a) where the measured initial state was matched by 
applying a suitable level of bond-normal applied displacement. 
The application of negative bond-tangential applied displace
ments further increased the NCOD in the near-front region. 
The comparison made at w0 = 1, Vo = 0 reveals that there 
was very little difference in the linear and nonlinear analyses 
which overpredicted the NCOD very close to the crack front. 
The same was essentially true at initiation, u0 = v0 = 1. 

The associated double logarithmic NCOD profiles are shown 
in Fig. 5(b). The initial state profile was linear with a slope 
mE = 0.55. At initiation, the measured elastic slope had de
creased to mE = 0.45 while there was a hint of inelastic response 
giving mP = 0.42. The corresponding slopes from the analyses 
were mE = 0.33 and mP = 0.37. The TCOD had slopes mE 
- 0.49 and mP = 0.40. Again, neither the measured nor the 
predicted slopes in regions of inelastic response showed any 
sign of HRR singular behavior in the crack opening displace
ments. Furthermore, it can again be seen that the far-field 
elastic NCOD did not follow the expected square root behavior 
whereas the TCOD did, suggesting that the notch effect dis
cussed earlier was again apparent. 

uos=33.0 |lm . voe=3.7'J nm 

Linear Analysis 

Nonlinear Analysis 

200 400 600 

Distance from Crack Front, r (irm) 

u0 s = 33.0 urn, voc = 3.79 jun 

LinearfTCOD) / 
• • • - Linear (NCOD) 

Nonlinear (TCOD) 
~ Nonlinear (NCOD) ,-.*' 

of o 
-' ,-••' a/ o 

a /' o 

/:' O 

/ I •' I 

t 

O 0 0 

o 1 1 -

-

LOO r (nm) 

a) NCOD Profiles b) COD Asymptotics 

250 

S 
200 5 

100 1 

0.5 1 

Crack Propagation (10 da/a) 

c) Resistance Curve 

Fig. 4 Crack initiation characteristics under sequential loading with 
positive bond-tangential applied displacements 
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The resistance curve for this loading was obtained by match
ing the measured NCOD in the region of elastic response and 
extracting the energy release rate and mixity from the finite 
element solution. There was a smaller amount of stable crack 
extension under negative M0 than had been noted for a similar 
amount of positive u0. Crack initiation, as previously defined, 
occurred shortly after the application of bond-normal applied 
displacements and it was again associated with a drop in plastic 
zone size. The maximum extent of the plastic zone behind the 
crack front was approximately 100 /*m, about two-thirds of 
the value notched for the positive bond-tangential load. The 
predicted plastic zone size; 180 ftm, was considerably higher 
than the measured value, in keeping with the overprediction 
of NCOD. There was no measurable plastic zone associated 
with steady crack propagation. 

3 Interfacial Toughness 
The experiments that were analyzed in the previous section 

were part of a series that was conducted over a range of mode 
mixes by applying various amounts of positive or negative 
bond-tangential applied displacements and then adding bond-

normal applied displacements until steady propagation oc
curred. The mode mix thus obtained ranged from -60 deg < 
4> < 90 deg, limited essentially by crack branching effects. 
Resistance curves of the types shown in Figs. 3(c), 4(c), and 
5(c) were obtained for each experiment and Gc, the critical 
value associated with the sudden jump in crack velocity, was 
extracted. The Gc values, or interfacial toughness, were plotted 
as a function of mode mix (Fig. 6). 

The results were obtained from four specimens that had the 
same degree of adhesion, as can be seen by the consistency of 
toughness values where mode mixes overlapped. For 0 deg < 
4> < 45 deg, the toughness was relatively independent of mode 
mix and thus a mixed-mode fracture criterion for initiation 
that required a constant value of Gc to be attained seems 
reasonable. However, for - 60 deg < i/< < 0 deg and 45 deg 
< 41 < 90 deg, the interfacial toughness was highly dependent 
on mode mix, with the maximum toughness being approxi
mately ten times the minimum value. As a result, the immediate 
recommendation for design purposes is that the toughness of 
any particular interfacial crack configuration should be eval
uated at the appropriate degree of mode mix. 

Another way to view the results shown in Fig. 6 is to plot 
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Fig. 5 Crack initiation characteristics under sequential loading with 
negative bond-tangential applied displacements 
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the interaction diagram depicted in Fig. 7. The fracture ini
tiation envelope represents the combinations of the real and 
imaginary parts of the complex K combination KhK that were 
required in order for crack extension to occur. The envelope 
in the first quadrant was almost closed except for small values 
of Re[Kh'e]. The sharp increase in toughness there is reasonable 
if one considers what would happen for zero or slightly negative 
values of Re[KhK], Under such conditions, although there will 
always be some opening near the crack front (Comninou and 
Schmeuser, 1979; Liechti and Knauss, 1982b; Liechti and Chai, 
1991), the degree of crack-face contact further away would be 
greater, possibly making it more difficult for a crack to prop
agate due to far-field frictional effects. In the fourth quadrant, 
the envelope showed no signs of returning to zero Re(_A'e) 
for the range of mixities that were considered. It is conceivable 
that the envelope in this region would never close because of 
near-front closing (compressive) tendencies acting in conjunc
tion with frictional effects. 

Toughening Effects. For a smooth, frictionless interface 
with an intrinsic adhesive energy, ya, so low that any yielding 
in the constituent materials under any loading would be con
fined to submicron dimensions, one could expect that the in
terfacial toughness, Gc, would be the same as ya for all mode 
mixes. Higher values of ya would excite inelastic deformations 
in one or both constituents and the associated dissipation would 
make Gc greater than ya. The possibility of mode-mix effects 

then arises because increased shear tends to facilitate inelastic 
deformation. Fracture surface roughness may also have a 
toughening effect due to microbranching, asperity locking, and 
frictional effects. The purpose of the following discussion is 
to examine a number of potential toughening mechanisms that 
might account for the increases in toughness shown in Fig. 6. 

The contributions to the overall interfacial toughness, Gc, 
that were considered here were the intrinsic adhesive energy, 
7a, the rate of plastic dissipation near the crack front, Wp, the 
rate of bulk viscoelastic dissipation, Wm in the specimen, and 
shielding due to the initial roughness of the interface, AGC. 
Thus, in effect, we expect that 

Gc = ya+Wp+Wv + AGC. (7) 

where (') = d( ) /da. The possibility of microbranching, cited 
as a cause of toughening in the work of Anderson et al. (1974b), 
was not included because SEM micrographs of the epoxy frac
ture surface did not reveal any features. If any existed they 
must therefore have been smaller than 0.01 /jm. Although 
friction may have an effect on toughness, it was beyond the 
scope of this study. 

Previous work (Liechti and Hanson, 1988) had suggested 
that the toughening effect was associated with increases in 
plastic dissipation because plastic zone sizes increased with 
increasing shear component. This possibility was considered 
here by first examining the plastic zone shapes and sizes as
sociated with various degrees of mode mix. The plastic zone 
shapes that developed at initiation under the three loadings 
already considered in detail in Section 2 are shown in Figs. 
8 (a)-8(c) . The mode mixes represented there are \j/ = 16deg, 
- 54 deg and 88 deg and the plastic zone boundary in the epoxy 
was taken from the nonlinear solutions at an equivalent stress 
level of 20 MPa, the yield strength under uniaxial tension. The 
shapes are qualitatively the same as those shown by Shih and 
Asaro (1991). The plastically deformed region under bond-
normal loading was extremely small in comparison to the plas
tic zones that developed under the sequential loadings with 
positive and negative u0. The extent of the plastic zone ahead 
of the crack front was taken to be representative of trends in 
plastic zone volume and was obtained for all the other exper
iments that were conducted (Fig. 8(d)). The plastic zone sizes, 
thus defined, followed the same trends that the toughness 
exhibited with mode mix. Although all yielding was small scale 
in nature, there were large increases in size as the shear com
ponent increased. 

The next step that was taken was to estimate the rate of 
plastic dissipation associated with points that enter the plastic 
zones discussed above and then leave them as the crack ini
tiates. Each point in this plastic zone is loaded to some max
imum stress and is then unloaded to zero stress as it is left 
behind. The plastic energy dissipated by all points undergoing 
some loading/unloading cycle within plastic zone occupying a 
volume Vp is given by 

6o. 
Wp=\ \'J aijdeijdV- We (8) 

Jvp
 Jo 

where We is the elastic strain energy and e}j is the current state 
of strain. Wp was extracted for any mixity and critical load 
level using a post processing option in ABAQUS. Since fracture 
parameters are independent of crack length in the strip spec
imen, Eq. (8) represents the energy dissipated by a series of 
points along X\ = c (a constant) that enter and leave the plastic 
zone as the crack front passes by. The rate change of Wp per 
unit crack extension over the specimen thickness, b, is then 

W 
p bAa 

For the purposes of this approximation, the plastic zone shape 
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was taken to be rectangular (Chai, 1990), so that the crack 
growth increment, Aa, was 

Aa = 2r„ (10) 

Fig. 8 Plastic zone shapes and sizes at Initiation 

for all points entering and leaving the plastic zone. A more 
rigorous calculation of Wp was conducted by Shivakumar and 
Crews (1987) for cracks in tough, homogeneous materials. A 
finite element analysis of a growing crack was used that was 
beyond the scope of this study. The effect of residual strain 
energy locked in the wake, which was not considered here, was 
found to be small.. The values of Wp calculated from (9) (Fig. 
9(a)) were distributed in much the same way was as the tough
ness values. However, the maximum value of Wp was 2.5 J/ 
m2, more than an order of magnitude less than the maximum 
Gc value of 36 J/m2, perhaps indicating the need for a more 
rigorous dissipation analysis that includes better modeling of 
the inelastic behavior of the epoxy. 

The second potential contribution to the overall interfacial 
toughness that was considered was the possibility of viscoelastic 
dissipation in the bulk of the epoxy ahead of the crack since 
some relaxation had been observed, particularly under shear 
(Chai, 1990, Fig. 15). It was determined by considering the 
history of a strip of stressed material of length, Aa, that was 
originally ahead of the crack front and then unloaded with the 
passage of the crack front. The viscoelastic dissipation due to 
a loading/unloading cycle is 
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Wv=\ \ Oij-eijdtdV. (11) 
•Jy JQ 

The viscoelastic dissipation in the strip was therefore 

p'o 
AWv = hbAa\ aykydt. (12) 

The rate of change of dissipation with respect to crack exten
sion was then 

AW f'° 
W» = TTa=h J0 «>'**» (13) 

The calculation was repeated for each degree of mixity and 
the results are shown in Fig. 9(b)) . Under bond-normal load
ing, Wv was almost zero but as the degree of shear was in
creased, there was the same dramatic increase for large l\M 
values. However, although the distribution of Wv was much 
the same as that of Gc, the values were again considerably 
lower. The maximum value of W„ was 3 J/m2 which was an 
order of magnitude lower than the maximum Gc of 36 J/m2. 

Thus it is clear that, although both the plastic and viscoelastic 
dissipation rates considered here did not increase with increas
ing shear component, they did not account for the noted in
crease in interfacial toughness. In fact, since fracture surface 
roughness does not provide any shielding under bond-normal 
loading (i/< = 16 deg), the intrinsic adhesive energy ya can be 
found from 

7«= [Gc- Wp- Wv]+=l6 = 4 J/m2 . (14) 

Previous work by Anderson et al. (1974b) using a scanning 
electron microscope and analyses by Evans and Hutchinson 
(1989) suggest that the roughness of the fracture surface con
tributed to the increase in overall toughness that was noted in 
associated fracture toughness experiments. In Anderson et al. 
(1974b), the roughness of the fracture surface was considered 
to have been formed by microbranching of the main crack into 
the more brittle medium, increasing the effective area of the 
crack faces. Scanning electron micrographs revealed an in
crease in the degree of microbranching and hence crack-face 
area. It was then postulated that, if the increase crack surface 
area were incorporated in the critical energy release rate cal
culation, the variation of Gc with mode mix might disappear. 
In our work, scanning electron micrographs were made of the 
epoxy fracture surfaces that were obtained for various degrees 
of mixity. Within the resolution of the SEM (0.01 ~ 0.015 
jim), there was no indication whatsoever of any surface features 
on the epoxy fracture surface, making it unlikely that micro-
branching could have occurred. 

The surface roughness effect considered by Evans and 
Hutchinson (1989) was that due to the interlocking of crack 
face asperities that resulted from crack growth along an initially 
rough interface. The basic idea was that, under bond normal 
loading, the asperities would not touch and there would be no 
increase in Gc above ya, all other dissipative effects being zero. 
It was then argued that, as increasing amounts of shear were 
added, the asperities would contact and thus provide a shielding 
or toughening effect. The model has several simplifications 
including an idealized interface morphology, homogeneous 
elastic properties, and no friction. The increase in overall in
terfacial toughness AGC due to the shielding effect was taken 
to be 

AGc=Gc-ya. 

The governing material parameter x is given by 

where His the amplitude of the interfacial roughness, L is the 
wavelength of the roughness, and E is Young's modulus. 

The effects of shielding, represented by AGC/GC, with mode 
mix (\p) for various values of the nondimensional material 
parameter, x, are plotted in Fig. 9(c) . The solid lines are model 
predictions and the discrete points are a replot of the experi
mental results in Fig. 6. Most of experimental data in the range 
16 deg < \j/ < 90 deg fall between x = 0.7 and 3. In the 
current work, the epoxy was cast directly to a glass adherend 
whose surface had been polished to a flatness of X/4 per inch. 
The rms amplitude (H) and wavelength (L) of the interfacial 
roughness were approximately 0.002 fim and 2 /zm, respec
tively. By substituting the modulus of the glass (E = 70 GPa) 
and the intrinsic adhesive energy (ya = 4 J/m2), current ex
perimental conditions gave rise to a value of x = 0.035 which 
produced a toughening effect that was much lower than was 
measured. 

Since the minimum value of Gs occurred at \j/ = 16 deg, it 
was taken as the zero shielding value of \p in the asperity 
shielding model. Since the model did not account for friction, 
the predicted shielding was symmetric about \p I AG =o as shown 
in Fig. 9(c) . When the toughness data is considered with re
spect to \jj = 16 deg and x values between 3 and 0.7, it can 
be seen that there was a much stronger shielding effect for \p 
< 16 deg than for \j/ > 16 deg. Although some of this asym
metry was provided by plasticity and viscoelasticity effects 
(Figs. 9(a) , 9(b)) most of it must be due to friction which 
has not yet been considered as a shielding mechanism. 

The location of the minimum value of Gc is arbitrary, de
pending on the choice of the length scale in \p (Eq. (3)). In this 
work the chosen length scale was h, a choice based on geometry. 
Other suggestions (Rice, 1988) have included 1 yum or some 
characteristic length of the material such as a damage zone, 
crosslink length, AT-dominant zone, etc. Changing the length 
scale to 1 pun shifts ^ to the left by about 35 deg so that the 
minimum value of Gc would occur at 4> = - 17 deg. For the 
results presented here, the length scale that shifts AGC = 0 to 
\p = 0 is about 140 /*m, somewhat smaller than the largest 
values of plastic zone size that developed. 

The sum of the contributions to the toughening effect that 
have been considered to date are summarized in Fig. 9(d) as 
the predicted toughness. It can be seen that they fall short of 
the measured values. Although we do expect a synergism be
tween surface roughness and viscoplastic effects, it is unlikely 
to contribute substantially to the simple addition given here. 
The comparisons of predicted and measured NCOD particu
larly under bond-tangential loading (Fig. 4) suggest that one 
source of improvement could come from better modeling of 
the inelastic response of the epoxy under multiaxial stress con
ditions. Another possibility may be frictional contact of crack 
faces. However, in this context, it must be remembered that 
all Gc values were obtained under some degree of bond-normal 
applied displacements which means that, at initiation, the crack 
faces could only have been in contact over very small regions 
(less than 1 fim). During the bond-tangential phase of the 
sequential loadings, the degree of crack face contact was larger, 
but less than 100 /xm. Another factor which may have to be 
considered in more detail is the variation the crack front shape 
with mode mix. During the crack initiation experiments, the 
level of magnification that was used to resolve rear-front fringes 
was such that the entire crack front could not be monitored. 
Although it did appear, over the limited field of view, that 
self-similar growth occurred for all mode mixes, it is possible 
that edge effects (Chai, 1990) could have produced variations 
in crack-front geometry, but not to the extent observed by 
Liechti and Knauss (1982b). 

4 Conclusions 

A single specimen under biaxial loads was used to determine 
the interfacial fracture toughness of a glass/epoxy combination 
over a wide range of mode mixes ( - 6 0 deg < \p < 90 deg). 
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The toughness increased with increasing positive and negative 
in-plane shear components. Optical interference measurements 
of NCOD that were made near the crack front revealed large 
variations in plastic zone size with mode mix. In the plastic 
zone, the singularities expected from a power-law hardening 
representation of the epoxy stress-strain behavior did not arise. 
Even when the measured stress-strain behavior was considered, 
the measured NCOD under positive bond-tangential applied 
displacements revealed a greater degree of blunting than was 
predicted by finite element analyses that incorporated finite 
deformation and incremental plasticity. This and the fact that 
the estimated plastic dissipation; bulk viscoelastic dissipation 
and interfacial asperity shielding did not account for the noted 
toughening with shear suggest that the inelastic deformation 
of the epoxy should be given further consideration. The tough
ening effect was notably higher for negative mode mixes, sug
gesting that frictional effects may play a role. 
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Target Configurations for Plate-
Impact Recovery Experiments 
Normal plate impact recovery experiments have been perfomed on thin plates of 
ceramics, with and without a back momentum trap, in a one-stage gas gun. The 
free-surface velocity of the momentum trap was measured, using a normal velocity 
(or displacement) interferometer. In all recovered samples, cross-shaped cracks 
were seen to have been formed during the impact, at impact velocities as low as 27 
m/s, even though star-shaped flyer plates were used. These cracks appear to be due 
to in-plane tensile stresses which develop in the sample as a result of the size mismatch 
between the flyer plate and the specimen (the impacting area of the flyer being 
smaller than the impacted area of the target) and because of the free-edge effects. 
Finite element computations, using PRONTO-2D and DYNA-3D, based on linear 
elasticity, confirm this observation. Based on numerical computations, a simple 
configuration for plate impact experiments is proposed, which minimizes the in-
plane tensile stresses allowing recovery experiments at much higher velocities than 
possible by the star-shaped flyer plate configuration. This is confirmed by normal 
plate impact recovery experiments which produced no tensile cracks at velocities in 
a range where the star-shaped flyer invariably introduces cross-shaped cracks in the 
sample. The new configuration includes lateral as well as longitudinal momentum 
traps. 

Introduction 
Flyer-plate impact experiments with momentum traps and 

displacement and velocity interferometry provide a powerful 
technique for recovery studies of deformation and failure modes 
of materials. With a suitable design of flyer, specimen, and 
momentum trap configuration, it is possible to subject the 
specimen to predetermined stress pulses of varied durations 
and amplitudes, and to directly monitor these pulses by in-
terferometric measurement of the particle displacements and 
velocities at the back face of the momentum trap. 

In the plate-impact study of ceramics and ceramic compos
ites, it is of importance to avoid the generation of undesirable 
tensile stresses in the specimen. Such stresses can emerge 
through wave reflection from the boundaries of the flyer, spec
imen, and momentum traps, as well as through size mismatch 
between the flyer and the specimen, i.e., when the impacting 
area of the flyer is smaller than the impacted area of the target. 

To avoid tensile stresses reflecting from the free boundaries, 
a star-shaped flyer plate has been proposed by Kumar and 
Clifton (1977) and extensively used; (see, e.g., Yaziv, (1985). 
Notwithstanding this, tensile cracks are commonly observed 
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to form normal to the free edges of brittle samples, in the 
middle of each edge. These cracks are longer on the back face, 
which is in contact with the momentum trap, than on the front 
impact face, suggesting that they are formed at the free edges 
of the sample on the back face, and then extend through the 
thickness normal to the edge. 

To understand the origin of such cracking, two and three-
dimensional finite element simulations are performed, using 
PRONTO-2D (Taylor and Flanagan, 1987) and DYNA-3D 
(Hallquist and Benson, 1986) and assuming a linearly elastic 
response. Preliminary results of this effort were reported by 
Chang et al. (1989). Here we examine this problem in some 
detail both numerically and experimentally. 

Calculations confirm that in-plane tensile stresses are gen
erated in the back face of the sample. These in-plane tensile 
stresses are essentially due to the fact that the impacting area 
of the flyer is smaller than the total area of the sample. They 
occur whenever the sample area is larger than the area of the 
flyer plate, whatever the shape of the flyer plate (e.g., star-
shaped) or the sample (e.g., star-shaped). Their intensity in
creases with an increase in the linear momentum transmitted 
and an increase in the mismatch in the flyer and the target 
areas. They can produce tensile cracks on the back face, pos
sibly from existing microcracks. A simple estimate based on 
linear fracture mechanics shows that, to produce a crack in 
this material by a 0.5 GPa tensile stress, a preexisting flaw of 
200-300 mm is required at an interior point, but a flaw of only 
half this size at an edge. Since the sample is cut at the edges, 
the cracking invariably starts there, where there tend to be 
more and larger pre-existing flaws. In addition to tensile stresses 
due to the impact area mismatch, waves reflecting off the free 
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Fig. 1 (al Star·shaped flyer plate wit h projectil e after test ; (b! the star
shaped trace on Impacted face of square alumlnum-coated Mg.PSZ spec
Imen

Flg. '3 Plate impact configurations for DYNA·3D computation; (al star.
shaped flyer plate and square target plate and momentum trap; (b) star.
shaped flyer, target, and momentum trap

(b)(a)

.... .. '- ..... ~ ., ... ~

Flg.2(al

Flg.2(b)

Fig. 2 (al Back face of Mg·PSZ specimen Impacted at 47 m/s showing
cracks emanating from the middle of four edges; (b! fracture surf ace
normal to the Impact direction showing crack Initiati on and growth to
ward the Impact face

edges do produce in-plane tensile stresses which can cause
cracking. Hence, both the size effect (i.e., mismatch in impact
areas) and the effect of free edges must be carefully considered
for a proper recovery design.

Based on numerical computation s a simple construction is
proposed, which should alleviate some of the problems of
cracking, especially those associated with the flyer-sample im
pact area mismatch. All the par ts entering this construction,
including the flyer plate, are rectangular. The relative dimen
sions are estimated from the finite element computations, to
minimize the possibility of cracking. The effectiveness of this
construction is established experimentally.

In the sequel, we first report our experimental results, and
then discuss our numerical study.

Experimental Procedures
The specimens used in this experimental work are 25.4-mm

square 8-mm thick Mg-PSZ plates. Compression plane waves
are generated in these plates by the impact of a star-shaped
flyer in a 59.3-mm diameter gas gun. The specimen, flyer plate,
and momentum trap are lapped to be opticall y flat. The ex- . ;
perimental setup is carefully aligned to ensure a plane longi- .; .•••
tud inal wave at the center of the specimen. The targets are .....
subjected to normal compression ranging from 0.5 to 2.5 OPa •.•
and "mise duration of about 1 us. After the first impact, the ...
projectile is stopped by an anvil which prevents subsequent .·•.
additiona l impacts. The rear surface velocity of the momentumvi
trap is measured by normal displacement interferometry (NDI; ·."
Baker, 1968) and normal velocity interferometry (NVI; Baker
and Hollenbach, 1965). Since the momentum trap remains
elastic, this measurem ent yields the normal stress transmitted
by the sample to the momentum trap. The recovered specimens
are cut normal to the impact face, polished, and analyzed by
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optical and scanning electron microscopy and X-ray diffrac-
tometry. 

Experimental Results and Discussion 

Cracks in Recovered Specimens. Figures 1(a) and (b) show 
the star-shaped flyer plate with projectile, and the trace of the 
star-shaped flyer on the impact face of the sample. With the 
star-shaped flyer plate, cracks are observed to have formed at 
the middle of each free edge of the sample, extending toward 
the center. These cracks are longer on the back face than on 
the front face of the sample. Figure 2(a) shows the back face 
of the cracked specimen, and Fig. 2(b) displays the fracture 
surface normal to the impact direction (from one of the four 
pieces shown in Fig. 2(a)). The cracks initiate at the center of 
the edge of the specimen and propagate toward the impact 
face. The cracks are short when the impact velocity is low (or 
the flyer plate is thin). They are always longer on the back 
face than on the impact face. 

Numerical Simulation of Plate Impact Experiment. Since 
we are concerned with brittle materials such as ceramics and 
their composites, a great deal can be learned from analysis 
based on linear elasticity. Therefore, two and three-dimen
sional finite element computations are performed, assuming 

linear elasticity, to understand wave interaction in various plate 
impact configurations. Figures 3(a) and (b) show three-di
mensional meshes consisting of hexahedron elements to sim
ulate the normal plate impact test with star-shaped flyers, 
targets, and momentum traps. All the dimensions and materials 
used in the computations are similar to those used in the ex
periments. The computations show that in-plane (i.e., in the 
x, y-plane) tensile stresses are developed in the sample when 
the impact area of the flyer plate is smaller than the area of 
the target, essentially independently of the shapes of the flyer 
plate and the sample. These in-plane tensile stresses can then 
initiate tensile cracks on the back face of the sample. For a 
star-shaped flyer plate and a rectangular sample, typical con
tours of constant a„ are shown in the first quadrant of the x, 
.y-plane, a short distance (i.e., one element) from the back face 
of the specimen, at a fixed instant; see Fig. 4 (a-d). As is 
seen, at the upper left corner and at the lower right corner 
which are the centers of two edges of the sample, the generated 
in-plane tensile stresses are maximum. Later, the tensile stresses 
are also generated at the center of the plate, as is seen in Figs. 
4(c) and (d). It is noted that the contour lines of ayy and a^ 
are symmetric with respect to the diagonal line from the upper 
right to the lower left in the quadrant. The stress state of Fig. 
4(a - d) can clearly explain the fracturing of the PSZ square 
target plate, impacted at a velocity of 47 m/s. In this test, four 
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Fig. 4 Contour plots of axx in the first quadrant of the x, y-plane parallel 
to the impact face, a short distance from the back face of the specimen 
at indicated instances after impact for Fig. 3(a) configuration (impact 
velocity is 60 m/s); in-plane tensile stresses in hatched area are greater 
than 400 MPa: three-dimensional elasticity calculation 
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Fig. 5 Time history plots of (a) aa and (b) o„ at the center near the back 
face of the specimen in different configurations: a three-dimensional 
elasticity calculation; impact velocity is 60 m/s; zis the impact direction 
(compression is positive) 

fracture pieces were recovered. In our experience, fractures of 
this kind at such low velocities have occurred as a rule with 
essentially no exception. 

We have also performed similar three-dimensional com
putations for a configuration involving a star-shaped flyer and 
a star-shaped sample, which has been used by Longy and 
Cagnoux (1989) as shown in Fig. 3(b). Here again, since the 
target has greater area (its impacted face is larger) than the 
flyer, large in-plane tensile stresses are produced at the back 
face of the sample. A typical example is seen in Figs. 5(a) and 
(b). In these figures, we have plotted the aK-stress (Fig. 5(«)) 
and the in-plane o-^-stress (Fig. 5(b)) at the center near the 
back face of the target (an element from the back momentum 
trap), for the following configurations: 

(1) star-shaped flyer, square target and back momentum trap; 
(2) square flyer (with the same impact area as the star-shaped 

flyer plate in (1)), square target and back momentum trap; 
(3) star-shaped flyer, target, and momentum trap. 
The <7K-stress profiles are shown in Fig. 5(a) and the corre
sponding ff^-stress profiles in Fig. 5(6); these are for a fixed 
point on the back of the sample. As is seen, large tensile stresses 
are produced for all three flyer-target configurations. There 
are two peak tensile stresses which follow the main compressive 
pulse, although in the case of configuration (3), the second 
tensile pulse is reduced. The first appears to be due to the size 
(area) mismatch, and the second is generated from the lateral 

/usee 

(b) 
Fig. 6 (a) ff„ at different locations along the central axis of the specimen 
in star-shaped flyer configuration and (b) u„at different locations along 
the central axis of the specimen for square flyer configuration: a three-
dimensional elasticity calculation; impact velocity is 60 m/s; z is the 
impact direction (compression is positive) 

boundary of the target after the separation of the momentum 
trap. The time, t\ in Fig. 5(b), when the first tensile pulse is 
maximum, corresponds to the travelling time of the elastic 
wave from the traction-free part of the impact face of the 
specimen. The time t\ denotes the travelling time from the edge 
of the flyer plate to the lateral boundary of the target and then 
to the point of calculation. Figure 6(a) shows o^-time plots 
predicted at three different locations for configuration (1). 
These are: near the impact face(i); in the middle(m); and near 
the back face(ft); all three are along the central axis of the 
square target. The first tensile peak appears only at the back 
face. In-plane tensile stresses, originating from the target-flyer 
area mismatch, increase in magnitude as the calculation point 
approaches the back face. After three microseconds, the tensile 
stress along the central axis is larger near the back face than 
in the middle, while the compression stress is built up near the 
impact face. This may be due to the fact that the impact face 
of the flyer is smaller than that of the target. For the case of 
configuration (2) we do not observe this phenomenon, as is 
seen in Fig. 6(b). Figure 7 shows the effect of flyer plate 
thickness, at a constant impact velocity, on the tensile stresses 
calculated for configuration (1). The magnitude of the tensile 
stresses increases with increasing thickness of the flyer plate. 

It thus appears that, if the flyer plate is smaller (has smaller 
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Fig. 8 Schematic drawing of improved configuration for the normal 
plate-impact recovery test 

impacting area) than the target and if it imparts sufficient 
momentum to the target, then tension cracks can be generated 
on the back face of the target, normal to the free edges for a 
rectangular brittle target. These cracks may propagate through 
the thickness, toward the front face of the target. This confirms 
our experimental results shown in Fig. 2(b). While cracks can 
form at interior flaws in regions of high tensile stresses, there 
are two obvious reasons why edge cracks are more likely to 
be formed than cracks away from the edges for the kind of 
experiments with rectangular targets discussed in the previous 
section. They are: (1) the cutting process produces pre-ex
isting flaws at the sample edges; and (2) the same in-plane 
tensile driving stress activates an edge flaw of roughly half the 
size of an interior flaw. Our experiments clearly show that 
cracks are invariably initiated at the back face of the sample, 
from its edges. The star-shaped flyer plate does not prevent 
this kind of cracking. 

Improved Flyer-Target Configuration. To minimize frac
turing of the sample in normal plate-impact experiments, it is 
necessary to reduce or eliminate the unwanted in-plane tensile 
stresses. To this end, computational simulations are used to 
obtain wave profiles due to the plate impact for various ge
ometries of flyer plate and target. Linear elasticity theory is 
employed and both PRONTO-2D and DYNA-3D computer 
codes are used. The results show that with a flyer plate larger 
than the target and with lateral momentum traps attached to 
the sample, the tensile stresses can be eliminated in a range of 
impact velocities, and minimized, in general. The dimensions 
of the flyer plate must be related to those of the target in order 
to obtain an optimal result. Figure 8 shows a square config
uration designed to reduce the tensile stresses. The dimensions 
in this construction must be constrained as follows: 

Lx>L2>Li>Ls, L2-Ls>4ti, L2-Ls>At2, h>tx. 
The symbols are defined in Fig. 8. It is noted that the width 
of a lateral momentum trap, (L2Ls)/2, should be larger than 
twice the thickness of the flyer and the target. Figure 9 shows 
the o-̂ -time diagram for the following configurations: 
(a) star-shaped flyer, square target and back momentum trap; 
(b) the proposed configuration which includes lateral and 

back momentum traps; 
(c) square flyer that matches the impact size, square target 

and back momentum trap without lateral momentum trap. 
Numerical simulations show that, for the same linear mo
mentum, the magnitude of the first tensile pulse decreases with 
decreasing size mismatch between the flyer and the target. 
Thus, in the case of configuration (c), there is only one in-
plane tensile stress peak, generated from the lateral free sur
faces of the target. 

Experimental Verification of Proposed Configuration 
Normal plate-impact recovery tests of the proposed config

uration, configuration (ft), have been performed. The sample 
and the lateral momentum traps are made of Mg-PSZ. The 
flyer plate and the back momentum trap are maraging steel; 
see Fig. 10(a). Four copper wires attached to the target are to 
monitor the tilt at the time of the impact. The target assembly 
is placed in a carefully designed holder in order that the pro
jectile is stopped by an anvil after the first impact, which is 
shown in Fig. 10(b). This recovery experiment produces no 
tensile cracks in the PSZ sample impacted at 66 m/s. The 
cracks occur in the Mg-PSZ lateral momentum traps, as sche
matically illustrated in Fig. 10(c). 

The impedance of various constituents in the impact assem
bly must be carefully matched, in order to reduce complex 
wave interactions, and hence in-plane tensile stresses; see Fig. 
11. However, computations show that, even when the entire 
target assembly consists of the same material (e.g., Mg-PSZ), 
an in-plane tensile stress of about 400 MPa is generated by an 
impact velocity of 120 m/s, right after the compressive stress 
pulse passes the center of the specimen. 

To check this computational prediction, an impact test of 
the proposed configuration with Mg-PSZ flyer plate, specimen, 
and momentum traps has been performed. Figure 12(a) shows 
a recovered Mg-PSZ target assembly impacted at 122 m/s 
(longitudinal compressive stress is 2.5 GPa). The sample was 
fractured into four pieces by the in-plane tensile stresses, pos
sibly generated from the interface of the specimen and the 
lateral momentum traps. No damage was observed in the spec
imen due to the uniaxial compressive stresses. Figures 12(6) 
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Fig. 12 Photographs 01 recovered Mg·PSZ target assembly alter lm
pacted at 122m/s by Mg·PSZ flyer plate, showing the specimen fractured
Into four pieces (8)and the back momentum trap spalied Into two plates
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the target assembly (b) and a free-surface part of the back momentum
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Fig. 10 (s) Photographs of flyer plate, target assembly, and momentum
trap; the target consists of a Mg·PSZ sample and four lateral momentum
traps, copper wire tilt pins, and aluminum ring; dimensions of the mar
aging steel flyer plate are 34.3mm x 34.3mm with 2.54mm thickness,
specimen is 19.1mm x 19.1mm x 3.8mm, and lhe lateral momentum
trap Is 7.6mm x 26.7mm x 3.8mm; (b) plate -Impact arrangement to
study the effect of uniaxial compressive strain on material response; (e)
schematic drawing of cracks in lateral momentum traps produced in a
66 m/s Impact experiment

and (c) show a recovered Mg-PSZ momentum trap which orig
inally was a rectangular plate. Spalling has occurred on a single
plane at mid-thickness of the momentum trap, splitting it into
two half-plates. These half-plates are then fractured by the in
plane tensile stresses. Figure 12(b) shows the fractured half
plate next to the back face of the specimen, and Fig. 12(c)
shows the other half-plate. X-ray diffraction analysis shows
evidence of tetragonal to monoclinic (t-m) phase transfor
mation on the spalled surfaces. However, it was not possible
to detect any such transformation at the interior of the im-

Conclusions
In plate-impac t recovery experiment s with star-shaped flyer

plates, cracks have been observed at the middle of each free
edge of ceramic samples, even at impact velocities as low as
27 m/ s. Two and three-dimensional finite element simulations
show that tensile stresses in the specimen are generated through
wave reflection from the boundaries of the flyer, specimen,
and the momentum traps, as well as through size (area) mis
match between the flyer and the target. When the impact face
of the flyer is smaller than that of the target specimen, in
plane tensile stresses are generated in the specimen. An im
proved configuration for soft-recovery impact experiments is
suggested, based on numerical computations using linear elas
ticity and two and three-dimensional finite element codes. All
parts in this configuration are rectangular. The predictions of
these numerical simulations have been verified experimentally.
No cracks are observed in the recovered samples which were
impacted at less than 66 m/s. However , at an impact velocity
of 122 mis, the sample was broken into four pieces, even
though the same material (Mg-PSZ) was used for the entire
assembly. The three-dimensional computations suggest that

310 I Vol. 59, JUNE 1992 Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



in-plane tensile stress pulses originate from the interface be
tween the specimen and the lateral momentum traps. These 
tensile stresses can therefore be reduced, using a large specimen 
with lateral momentum traps. Our carefully coordinated ex
perimental and computational study suggests that a better un
derstanding of wave interaction, which leads to the generation 
of tensile stresses in plate-impact recovery experiments, is nec
essary in order to be able to study the dynamic behavior of 
brittle materials at high and ultrahigh strain rates. 
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Green's Functions for 
Axisymmetric Problems of 
Dissimilar Elastic Solids 
Green's functions are obtained for axisymmetric body force problems of dissimilar 
elastic solids. The Green's functions are defined as a solution to the problem of a 
dissimilar elastic solid subjected to axisymmetric body forces acting along a circle 
in a radial, a torsional, and an axial direction. As a special case of the present 
results, Green's functions are obtained for problems of an elastic half-space with 
the free surface or rigidly fixed surface and of a homogeneous isotropic elastic solid. 
An application of the Green's functions is investigated for an eigenstrain problem. 

1 Introduction 
The aim of this paper is to show a fundamental solution for 

axisymmetric problems of dissimilar elastic solids. The fun
damental solution may be called the Green's functions for 
axisymmetric body force problems of dissimilar elastic solids. 

Various numerical methods of solution were recently de
veloped for engineering problems. In most of these methods 
of solution, such as boundary element methods, charge sim
ulation methods, eigenstrain methods (Mura, 1987), body force 
methods (Nisitani, 1967) and so on, fundamental solutions are 
used to formulate integral equations for a problem. In order 
to efficiently obtain more accurate results, Green's functions 
are used by Yuuki et al. (1987), Kisu et al. (1986), Hasegawa 
(1981, 1982, 1984a, 1984b, 1988, 1990), Lee and Keer (1986), 
Lee et al. (1987), Lee et al. (1988), and others, because the 
Green's functions completely satisfy part of the boundary con
ditions of the problem. They apply the Green's functions, such 
as Mindlin's solutions (Mindlin, 1936), for a point force in an 
elastic half-space, Rongved (1955) or Dundurs-Hetenyi's so
lutions (Dundurs and Hetenyi, 1961, 1965; Hetenyi and Dun-
durs, 1962) for a point force in an dissimilar elastic solid and 
other solutions instead of Kelvin's solution (Kelvin and Tait, 
1985) for a point force in an infinite solid. 

The Green's functions shown here are defined as a solution 
to the problem of a dissimilar elastic solid subjected to axi
symmetric body forces which act as a radial, a torsional, and 
an axial force distributed along a circle. As a special case of 
the Green's functions by taking the parameter £ equal to zero, 
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Green's functions are obtained for an elastic half-space with 
a free surface; £ — oo for an elastic half-space with a rigidly 
fixed surface, and £ = 1 for a homogeneous isotropic elastic 
solid. Here, £ represents the ratio of elastic constants. To 
obtain the Green's functions we use stress functions (Hase
gawa, 1975, 1976) for axisymmetric body force problems and 
for axisymmetric surface force problems of elasticity. 

An application of the Greens's functions, shown in this 
paper, is investigated for an eigenstrain problem (Mura, 1987) 
in the theory of micromechanics of materials. 

2 Definition of Green's Functions 
In this paper we use cylindrical coordinates and denote them 

by (r, 6, z) or (/= 1, 2, 3). Figure 1 shows a dissimilar elastic 
solid with Lame elastic constants \k and ixk(k =1,2). The half-
space (0<r^ oo, £>0) will be referred to as region k= 1 and 
the half-space (0<r^ oo, z<0) as region k=2. 

The Green's functions shown are defined as a solution to 
the problem of the dissimilar elastic solid, as shown in Fig. 1, 
subjected to axisymmetric body forces 

F'-t«- •a)8(z-A)(i= 1,2, 3) (1) 

distributed uniformly along a circle (r=a,z = h) in the interior 
of the solid where S( ) is a Dirac delta function. The body 
forces Fj (/= 1, 2, 3), are illustrated in Fig. 2 for a radial force 
Fi acting in the /--direction, in Fig. 3 for a torsional force F% 
acting in the 0-direction, and in Fig. 4 for an axial force F} 
acting in the z-direction, respectively. 

We assume that the two half-spaces are perfectly bonded to 
each other at the interface (z = 0). The boundary conditions at 
the interface (z = 0) are 

z = 0, 0<r<oo; «' = «/, o\ = ai, r1 =r2 

' zr ' zrt 
r\e- (2) 

where superscripts 1 and 2 refer to the quantity corresponding 
to the region k=\ and 2, respectively. 
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Fig. 1 A dissimilar elastic solid with elastic constants \k and m 
Fig. 3 A torsional force acting along a circle 

Fig. 2 A radial force acting along a circle 

3 Basic Equations 

3.1 Fundamental Equations. We consider axisymmetric 
deformations of an elastic solid. That is, the displacements 
and stresses treated here are independent of angle 6 in cylin
drical coordinates. It is well known that the displacement com
ponents ut, 0 = 1 , 2, 3), satisfy the fundamental equations 

M V 2 - 3 W - + / ^ 3 ; 3 + (X + /i)grad;div U+F^O (3) 

where U is a vector with the components w,; X and n are the 
Lame's constants; F, are body forces; and 63,- is a Kronecker's 
delta. The solution u, for (3) can be obtained (Hasegawa, 1975) 
by 

Fig. 4 An axial force acting along a circle 

Fj = — J„(cta) cos (3h 
2-7T 

(8) 

for the present problem. From (4), (6) and Hooke's law, we 
can obtain: 
(i) For the radial force F\ as shown in Fig. 2; 

1 
l\x Uj = 2(\-v)\ V - -2 + 53 ,3]0,-grad,div4> (4) 

2mm = 

"2 = 0 , 

Td-I - , ) 0 "̂ 0 
OF. 

2(1 -vi) a2 

1 ' <x2 + 02 (a2 + P2)2{ 

xJi(ar) cos Pzdadfi, 

where <t> is a vector with the components <j>it (/'= 1, 2, 3), which 
are stress functions satisfying the equations 

V ' - - + 5 3 , - - | 0 , = T—-F, (5) 

and v is Poisson's ratio of materials. 
The stresses (Hasegawa, 1976) in terms of stress functions 

fa can be obtained from (4) by using Hooke's law. 

3.2 Stress Functions for Body Force Problems. It was 
shown in a previous paper (Hasegawa, 1976) that the displace
ments u, due to the body forces Ft acting in a semi-infinite 
region ( 0 < r ^ oo, z>0) can be obtained by the stress functions 

a J„ (ar) 

ry poo |»oo rP'R 

2/*i/t3= —r. - \ Fi —j—-23 Jo(ar) sin Pzdctdfi, 

-2 r-r 27? n-"! ^ 
< T ^ T ( l - , 1 ) J o J o a ' K + ^2 («2 + / 

n i - i ' i ) Jo Jo (.(« 

Q2-,2 

XJ0(ar) cos ffzdadP, 

1-vi 

-2 + i82)2 a 2 + " 2 

r7„ = 0. 

xJi(ar) sin fizdadfi, 

(9) 

where 

,—MT 
•n-(l-z') J0 J0 

F,r7„ 
0 J0 

, 2 , fl2^2 cosPzdadfl 
(a +P ) 

(ar) cos fizdrdz 

(6) 

(7) 

(ii) For the torsional force F2 as shown in Fig. 3, 

«1=M3 = 0, 

aJi(ar) 
/*1«2 -MI 

7T J 0 J 0 

F2 ~ai^lz c o s Pzdadfi, 

and /„ (a r) is a Bessel function of the first kind of order n. 
We must take n = 1 for /= 1, 2, and n = 0 for z'=3. 

In this paper, we assume that the body forces F: of Eq. (1) 
act in the region k= 1 (z s 0). From (1) and (7) we have 

- 2 rr-aPMar) . 
rzg = F2—-—--r-smfizdadP, 

•w J 0 J 0 a +(3 

(iii) For the axial force FT, as shown in Fig. 4, 

(10) 
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2*iiHi=— : 1 ^3 , 2^ fl2s2 -A ( ^ ) s i n PzdadQ, 2/n2«3=- [ ^ 2 +{aZ-2 ( l -2c 2 ) )5 2 ] J 0 (ar)eaz da, 
ir(l-Vi) J0 J0 (or + p ) J0 

a,= - ( a{A2- (\-2v2-az)B2) J0(ar)eaz dz, 
«2 = 0, 

2 r r p fta-Fi) ff2 

2Ml«3=-7; r \ 0^3 ) 2 . „2 _ / 2 , fl2x2 
TT( I - I ' I ) J0 J0 (_« +/3 ( a + P T 

x7 0 (a r ) cos Pzdadfi zr= I a{.42 + (az + 2p2)52) ^(ar)*?"* da, 

{°° p°° f 1 _ 2 ") p°° 

«0Fj h ] 4 + r 2 T A 2 » * = - «C2/ , (ar)c«rfa . (14) 
0 J0 (a + p (a + p)) Jo xJ0(ar) sin [Szdadp 

*{!-*{) 
\ \ a2F, \ , "', , , , ( 4 Green's Functions 
J0 J0 U ^ 2 («2 + P2)2J H p r „ s t M , n h ) 3 i n t h ( Here we shall obtain the Green's functions defined in Section 

x Ji(ar) cos pzdadff, 2. We assume that the body forces Ft of (1) act separately for 
_ 0 ,,... each component i = 1, 2 and 3 in the region k = 1 (z>0). Simple 

a superposition of the Green's functions yields the ones for the 
case where the three components of the body forces act at the 

where vk (k = 1, 2), are Poisson's ratios of the region k. The 
expressions of stresses were presented only for the components 
necessary to determine the constants in the stress functions 4.1 A Radial Body Force Fx. For the region k= 1 (z>0), 
(12) for surface force problems shown in the next section. It w e s h a 1 1 express the displacements «,- and stresses ay by using 
is easily seen that (9), (10) and (11) do not usually satisfy the (9) a n d (13) a s follows: 
boundary conditions (2) on the plane z = 0. That is, the plane r ^ C ^ C ~\ 
z = 0 is a symmetry plane for the body forces F{ and F2 while j "' j = j "' I 0f Eq. (9) + "' f of Eq. (13). (15) 
z = 0 is an antisymmetric plane for the body force F3. {jtyj \jryj (jtyj 

In the region k = 2 (z<0), there are no body forces. Therefore, 
3.3 Stress Functions for Surface Force Problems of a Half We can express the displacements and stresses in the region 

Space. In order to obtain the solutions satisfying the bound- k = 2 by only (14) for surface problems. That is 
ary conditions (2), we shall use the stress functions (Hasegawa, 

' " ' • ' "* . ' "*) • W = W„tE,.a4,. (.0 
tf = -J0 (ar)(Ak + azBk) exp { ( - \)kaz)da, La'jJ ^'j) 

J0 a 

** = t -v, * x C*rJ2 (a/") e x P t ( - !)*«*) <*«. (12> Jo 2(l-j»1)a 

By application of the boundry conditions (2) to (15) and 
(16), the constants Ak, Bk, and Ck can be determined as follows: 

^ i = ^ t t * + I 0 + ; ^ [ ( l - 4y , )& r - l 4 * 1 + (3-4?1)$)Y], 
for surface force problems of a half-space where Ak, Bk, and 
Ck, {k= 1, 2), are arbitrary constants which are determined by „ _ ^ j _ , f „ „ 
the boundary conditions (2), and k is taken as 1 for the region ' ~ £1 
(z>0) and as 2 for the region (z<0). . 

From (4) and (12), we can obtain, for the region k = 1 (z>0), A2 = — £(1 - 4J - 2 ) (X+ Y) + — £ { X - (3 - 4vx)Y] 
2 f e " " v 2£ 

{/l i - ( l - tw)fi, )7i (cw)e_oa da, 1 2/x^i = -
J( 

l»i«2= 1 CiJi(otr)e-az da, where 
Jo 

2/*iM3=- ( [^ i+{2( l -2p 1 ) + az)fi I] /0 (ar)e-azda 
Jo 

a,= ( « M , + ( l - 2 i . 1 + « ) B , ) / 0 (a / - )e - M rfa, X = — ^ — - f aF, j : 

J0 ir(l-vi)J0 (_ 

B2 = -H(X+Y) (17) 
C2 

£ = ̂ , f i = l + (3-4i»,)f, £2 = £ + 3 -4 „ 2 (18) 

and X and F are 

2(1 - i > i ) « 2 , 

a 2 + p 2 ( a 2 + ^ 2 ) 2 ( ^ ' 

r,r = 
rf/3. (19) 

= [ o M , + (ca-2i»1)B1}7,(ar)c-«rfa, 2 f - f a2 l-v{) 

ra=- \ aCxJx(ar)e~m da. (13) 
Jo 

Similarly, for the region k = 2 (z<0), we have 

I« X= 

{.42 + (1 + az)B2}Ji (ar)em da, 4TT(1 - v{) 
0 

w i i 2 = [ aC2J,(a/-)e«rfa, 7 = - — ^ — ( 1 - 2 ^ - a / / ) ^ (a«)e" a A . (20) 
J 0 47T(1 -^ ! ) 

Now, we shall obtain the Green's functions for the radial 
body force Fi as shown in Fig. 2. From (8) and (19), we have 

X=—^—-(3-4Vl-ah)Ji(aa)e-ah, 
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By substituting (20) into (15) and (16) through (13), (14), and 
(17), we finally obtain the following results. Here use was made 
of the integral formulae developed by Erdelyi (1954) and Eason 
et al. (1955). 
(i) For the region k=\ (z>0), 

1 
2 / i i « n = D |[(3-4,)Gl,(^+£ff] 

_2j3-4 , 1 - ( l - , 1 ) ( 3 - ^ i + L _ ^ ) , a / 2 t e ) 

"21 = 0 

2/il«31 = 
rD 

12(1 - v \ ) ) z\Gx(x2) l-%zhq4(x2) 

ar(x\-\) ?i ar x\-\ 

-Z\ ^ [ Q v i M - ^ G ^ 

- O - K l ) 
3-< 

+ z-

?! 

2 ( l - ^ i 

3 - 4 " 2 V , 3 t e ) + ^ f ^ ^ 
?i 2ar x\-\ 

Qm(x2)-
x2-r/a 

x\-\ 
Gdx2) (21) 

(ii) For the region k = 2 (z<0), 

2jx2un 
2 ( 1 - n ) 

Z> 
3 - 4 y 3 - 4 y n 

+ —T I2l/2(*l) 

/; z\ Z\ Gi(xi) 

" 2 1 = 0 , 

2ft2"31 
^ fc 

?! W «/• jci-i 

6 1 / 2 ( ^ 1 ) - ^ r / o i ( ^ i ) 4-1 
3 - 4 ^ 3 - 4p2 

rq3 (*i) (22) 

where Q„ (x) is a Legendre function of the second kind of the 
order n, and 

Z\=z-h, z2 = z + h, 

Xi = -
f + tf + zt 

2ar 

2/J.2U22 = 
1 

ir2\ar 

"12 = " 3 2 = 0 

S1/2U1), 

(25) 

4.3 An Axial Body Force F3. For the region k= 1 (z>0), 
we can express the displacements and stresses as follows: 

",' "'! of Eq. ( l l ) + l "' \ o f E(J- (13)- (26> 

In the region £ = 2 (z<0) there are no body forces. Therefore, 
we can use (14) for the region. That is, 

Ui 
of Eq. (14). (27) 

From (26), (27) and the boundary condition (2), we can obtain 

Bi = 
%X-Y 

?i ' 

A =& / l - ^ i 1\ IY(3-Avx \-Av2 
2 2 I ?2 ? J 2 I ?, ?2 

5 2 = 
?( j r -y ) 

?2 
(28) 

where X and y are 

2 
X = -

y = -

7T( l - „ ) 

_2 

"x(l-K,) 

f p (2(1-,,) ? I 

I."^(^"c?^)*- (29) 

Now, we shall obtain the Green's functions for body forces 
F3 as shown in Fig. 4. From (8) and (29) we have 

4TT(1 — vi) 

G, (x) =xQin(x) - Q-m(x), 

G2(x)=xQ„m(x)-QW2(x). (23) 

Also, D and #„(*,) are expressed in (50) and (51) of Section 
6. In the aforementioned expressions, the notation Uy repre
sents the displacement component in the /-direction at point 
(r, z) when a unit ring force in the ./-direction at point (a, h) 
corresponds to the Green's functions G,y in the theory of mi-
cromechanics (Mura, 1987). 

4.2 A Torsional Body Force F2. Green's functions for 
torsional body force F2, as shown in Fig. 3, were obtained in 
a previous paper (Hasegawa, 1988) by using (10) and the stress 
functions 4>2 in (12), and are expressed as follows: 

(i) For the region k= 1 (z > 0), 

' - ^ * < - » • - • (30) 

2m, 
1 ( 2£ ) 

u22 = ——= Y\ Qu2(xi) --~Qy2(x2) , 
2ir2-Jar (.£7 l +? J 

"12 = "32 = 0 . 

(ii) For the region k = 2 (z<0), 

(24) 

By substituting (30) into (26) and (27) through (13), (14), and 
(28), we can obtain: 

(i) For the region k= 1 (z>0), 

2 i " i « i 3 = - r 
aD t f [a^w-^rrOiM] 

- ( i -" i ) ( -7—-——)«93te)+- i— ^77:3—rtfste) 
?! ?2 

2(1-»,)*, 

?! 2ar x\— 1 

G1/2U2)-
x2 - a/r 

x\-\ 
Gdx2)\ 

"23 = 0 , 

2 M l " 3 3 = ^ S [(3 - 4„) G. ,/2 (x,) + ̂  TJ^Y G2 < *,) j 
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1 1 
arx\-\ 

1 -
2 ( 1 - J - , ) 

^2G2{x2)+~^zhg1(x2)}. (31) 

(ii) For the region k=2 ( z < 0 ) , 

3 - 4 i / 2 3 - 4 y t 

2 (z h 

"23 = 0 , 

2jU2«33 = 
D' 

a \h Si, 

3 - 4 ^ 3 — 4^2 

ft' (*i) 

e i / 2 ( ^ i ) - - ^ 7 ~ G 1 ( x 1 ) 

l(Xi) 

+ IH)S3=T*W|. (32, 

5 Special Cases 

Here we shall consider special cases of the Green 's functions 
for a dissimilar elastic solid obtained in the previous section. 
These are the cases whereby £ = /t2//*i = 0, oo and 1. 

5.1 Green's Functions for an Elastic Half-Space With a 
Free Surface. Taking the parameter £ = 0 in (21), (24), and 

(31), we obtain: 

(i) For a radial force as shown in Fig. 2, 

1 
2 M I " H = D ±[o-t,Mu^4rs0] 

_i_i,i , ^ / v . x , ( l - 2 c i ) z l G 1 ( x 2 ) + zhq4(x2) + 2(1 -21 /0 Q i / 2 ( x 2 ) + 
ar(xi-l) 

"21=0, 

2 / * i " 3 i = - ^ - £gfa/i<*>-^Q.<*> *?-i 

+ 2 ( l - y i ) ( l - 2 y i ) g 3 ( x 2 ) - r — 2 2 . 

, 2(l-vi)-z(„ . . Xr-rVa 
+ ; ]Qm(x2)—-j—-Gi(x2) 

r (__ x 2 - 1 

(ii) For a torsional force as shown in Fig. 3, 

1 2 

2^1 "22= 2 r—T] Ql/2(Xj), 

"12 = "32 = 0 . 

(iii) For an axial force as shown in Fig. 4, 

(33) 

(34) 

2 " l M l 3 = 2 ^ 
YJ *< Qi/2(*/)-^fjpGi(*/) 

- 4(1 - * , ) ( ! - 2K1)a<?3' te) + 

" x\-\ 
+ 2 ( 2 ( 1 - 2 ^ , - 2 ) Q, / 2 (x 2 ) 

zhz2 

ar 

x2-a/r 

' x\-\ 
G,(x 2 ) 

"23 = 0 

2^l"33 = ±{0.4^.^^01 
+ 2 ( 1 - 2 ^ Q _ „ W+<l^*a<«)^l(fi) 

o r ( A : | - l ) 
(35) 

These expressions coincide with the results (Hasegawa, 1976, 
1984a) for Green 's functions of axisymmetric body force prob
lems of a single elastic half-space ( 0 < r < o o , z > 0 ) satisfying 
the traction-free boundary condition 

z = Q, 0 < r < o o ; oz = Tzr = Tze = Q. (36) 

5.2 Green's Functions for an Elastic Half-Space with a 
Rigidly Fixed Surface. Taking the parameter £ — 00 in (21), 
(24), and (31), we obtain: 

(i) For a radial force as shown in Fig. 2, 

2/*i«i 
- 1 

D 
2 (-1)'1(3-4»,)Q1/2(x,) 

"21 = 0 , 

2 „ l « 3 , = ^ 

z] GjjXi)^ zh q4(x2) 

2arxf-l\ (3-4vi)ar xl-1 

\ x— r/a 
2 ] ( - l)'zA Qui<*,) --3—7- G, (x,) 
/=i I Xi l 

zhz2 qs(x2) 

(3-4!>i)ar xi-l 
(37) 

(ii) For a torsional force as shown in Fig. 3, 

1 2 

"12 = "32 = 0 . 

(iii) For an axial force as shown in Fig. 4, 

(38) 

2/il"l3 = 
1 

2aD 

zfe2 qi(x2) 
0-4v{)ar x 2 - l 

"23 = 0 , 

2 / * l " 3 3 = ^ 2 ( - l ) / + 1
 (3-4K1)Q_1/2(*,) + 

z? G2(xi)l 

2ar x 2 - l ' 

zh qi{x2) 

'0-4Vl)ar xj-l 
• (39) 

These expressions may be called the Green's functions for 
axisymmetric body force problems of a single elastic half-space 
( 0 < r < 00, z > 0 ) with the rigidly fixed boundary. Tha t is, these 
expressions satisfy the boundary condition 

Z = 0, 0<r<°°; Uj = 0. (40) 

5.3 Fundamental Solutions for Axisymmetric Problems of 
Elasticity. Assumption £ = 1 in (21), (24), and (31), or (22), 
(25), and (32) yields: 
(i) For a radial force as shown in Fig. 2, 

2/*«n = 

"21 = 0 

2nu 

( 3 - 4 e ) Q i / 2 ( * i ) + 
z\ G , (x ( ) 

n = 2nD{^mw'~ ~2 Ql/2(*l)" 

2ar x f - 1 

Xi - r/a 
G , ( x i ) 

x f - 1 

(ii) For a torsional force as shown in Fig. 3, 

1 
2\M22 = - -Qm(xi), 

2ir2\[ar' 
"12 = "32 = 0 . 

(iii) For an axial force as shown in Fig. 4, 

(41) 

(42) 

316/Vol. 59, JUNE 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2^=^{Qi/2(Xi)-^YGi(Xi)}-

2^4[(3-4,)e_1/2(,l)+^^]. 

l - 2 e , 

(43) 

These expressions coincide with the results (Hasegawa, 1975, 
1981, 1984a; Kermanidis, 1975) for fundamental solutions for 
axisymmetric problems of the homogeneous elastic whole space 
(0<r<oo, -oo<z<oo) . • 

6 Expressions for Stresses 
In a practical application of Green's functions, it is necessary 

to use expressions for stresses. Here we shall present stress 
components derived from the displacement Green's functions. 
By using Hooke's law, together with the displacements for a 
dissimilar solid obtained in the Section 4, we obtain 

(i) Stress Green's functions for a radial force as shown in Fig. 
2; 

~ , , Xi — r/a 
ei/2(*,)--^r-j-G1(x /) 

+ ja-^)^ + |+l)-l][G./2(x2)-^yG1te)! 

, i 2( l - y i ) (z + ^ ) / z2 Q5(x2) ,1-Zzh , " + \ - z,i—-s-. + ——gt{Xl) 

arD 
Zt (q^Xj) 

Lftxt-n 2 
+ (l-vl)Gi(xi) 

(a) For the region k= 1 (z>0), 
\ ^ f 3 - 2 * , 

- i = i 

_1_ 
'rD 

Quz(Xi)—'—T—Gi(Xi) 
Xi 

-(3-4*,)Q1 / 2(Jf,)-
z] q5(Xi)+2Gi(Xi) 

4ar x}-\ 

+ j ( 1^ l )(l"l"1)"1]r / 2 t e )"¥rG l t e ) 

+ ( I"HH-1 #iGite) 

, 2 ( l - i > i ) ( z - W )g4(*2) 

+ < _ . j - ^ 
l-fz/tfr 1 (Qi/2(x2) 2x2 

fa «r x i - l ( 2 - * f - l * 4 ( J C i ) 

1 
x i -1 

| G - , 2 t e ) + 4 ( l - A g U t e ) 

-iG^ (44) 

Tze = Trt) = 0. 

[z2+v\(z + £,h)-z^\z2 qs(x2) 
2 £i Jar x 2 - l 

+ , 1 _ 2 ( l - ( / , ) > 2 G 1 ( x 2 ) 

fa jar 4 - 1 

(6) For the region k = 2 (z<0), 

rZ>' 
3-4J<I 3 \ f X i - r / a 

a^ r£> 

- 2 j i + ( i - , o ^ + ^ - 4 ) } e 1 / 2 ( * 2 ) 

l - g z/i g6(*2)+2g4(*2) 
fa 2ar x\-\ 

z] Gdx,) 
2 (3-4i.1)Q1/2(jf/) + 

2ar x r -1 

+ "i 
Xj 1 

+ 2!(l-^fc^ + ^ - 4 ) + l f Q l / 2 t a ) 

+ i A _ i - \ z ' ?s(*i)+2G,(*i) 
fa fa/ «/• X i - 1 

, / 3 - 4 c 1 3 - 4 v 2 l 

00 = rD' 
2 ' '2 \^ . , Xi-r/a 

fa £2 
+ ( ^ + 3 ^ \ } /A z \ , G l ( „ ) 

fa fa/ 2ar x , - ! 

1 1 
ar x\ - 1 

2(1-y.) 
- 1 zlG,(x2) 

rD 

| (1 -£)[z/ig4(x2) - " l ^ f t t e ) ] " ) 

+ 2 M — - 1 gi / 2 (x 2 ) - A.2_1 G,(x2) 

£ , (4ar*?-l 

rZ>' 
1 3 - 4 f A ( Ar.-r/a 

U G i / 2 ( * 2 ) — f j — r G i ( * i ) i fa fa * i - l 

/* z \ zi<7s(*i) 

•f 1 
" ~ a r Z > ' x ? - l 

fa fa/ arjfj-1 

'ir^J'^+KHJ*™ 
(45) 
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(ii) Stress Green's functions for a torsional force as shown in 
Fig. 3: 

(a) For the region k = 1 (z > 0), 

rze = n 2 i— )S\^L-:GdxD—r—^—Gi(x2) 
8ir2-Jarar (.JtT xf-l 1 + £ X2- 1 

?•*> = 

87r2r\/ar 
S [3Q,/2(*,) + ̂ j ^ 0,(^1 

l+£ 

or = ag = oz = rn = 0. 

(ft) For the region /r = 2 (z < 0), 

fri Gi(*i) 

2k ^Qu2(x2)+^r!^rGl(x2) 
xi-i 

Tze = 

TrO-

4ir2aryfa~r(l + £) xj-l 

- « 

47rW«/'(l + £) C *I ~ 1 

4 - 1 
+ ^ - T ] ( l - " l ) ? ( - ^ - L + -- |Z2G2te) 

z - -
2(1-* , ) (« -$ A) 

€i 

, , .(l-£)zAz2 1 
<7l(*2) + „ . . <?2(*2) 

- 1 

aD 
S ; (l-2?,)Q1 /2(jt,)-

Si <w 

x- - a/r 

+2^Tj+i1- (1-' , )U+r1 

x jQ1/2(x2)-
X2

2 " f ^ x , ) 
X 2 - t 

f2 £, J2arx2-1 

(l-£)zft g6'(x2) 
£i 2 a r x | - l 

(J r =(J e = ^ = T r z = 0 . (47> rrf = r r t = 0. (48) 

(iii) Stress Green's functions for an axial force as shown in 
Fig. 4: 

(a) For the region k = 1 (z S; 0), 
- l r 2 

ffr = a ^ 

(6) For the region k = 2 (z < 0); 

S ? &"<*') 

<Tfl = 
arD 

+ JT"J fai (*/) + 2vlG2(xi) - (Xi-a/r)Gi (*,-)] 

+ {{1-^ti+1)-2}xjhG^ 
, f 2(1-yi)(z+ £/!)-(!-£)* ~)g,(x2) 
+ l 1 - Z 2 j^T 

-(i - "i)(—i—-—i—I mi (x2) 

2(1-c^z^f , , x2-a/r„ , ^ 
-\z- " 61 /2 (^2 )—^2—j-Gi (*2 ) 

| ( l - 0 ( Z ^ 2 ) ( 2 g 2 f e ) + g5'(X2)) 

£i 2ar 4 - 1 

' 2 r j 

S ^ a/2 (*) - T—r K*< -a/ /-) Gi (*/) 

2 , 1 G 2 (x ; ) ] J+2«J l -^^}^rG 2 (x 2 ) 

1 — £ A ( zz? 
+ ~Z 2—7 2"i#i (*2> +T~Qi (x2) 

£1 * 2 ~ K 2a/" 

n s / 3 " 4 " ! 3 -4y 2 \ 
- ( l - " i ) | — : — - — : — 093(^2) 

z ; 6 i / 2 f e ) - ^ _ j Gi(x2) 

arZ> 

y i Zt Q?i (x,) 
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ar = 
£ 

arZT 

3-4y t 3 \ Zi 

+ I —7—L - — — - ) ag{Xi (x,) + 2 f - - - 1 j Q1/2 (x,) 

1 
+ * M <7 i (* i ) - ( * ! - - ) G i ( x i ) 

arD' >i£- i » - ^ w 
3 - 4c, 3 - 4v2\ 4e2 Zi „ , , 

+ I — r — L - — ^ ^ )a?3 (*i)+ , ,.2 1 G 2 (x l ) n ?2 

- £ 1 ( /3 -4CJ 1 

f 2 « i - l 

arD'xi-\ +tj*&™+Hi-ij*<x4 

aD 

3-4y t A T Xi-a/r^ , 

_ A _ z \ z i g5' 
Ui hjarxl-l 

where £> and ZJ' are 

£>= 87r2Var(l - vj), £>' = 8TT2VW-

and g„ (x,), (« = 1 ~ 6) represent 

?i= ji—rnr^] G2U,)+^Le-1/2U), 
/ xf-lar) 2ar 

(49) 

(50) 

2x; / x 3 

4 - 1 
Jf/ z< 

G-l /2(* / ) 
2 (x;-l)ar 

, G2(Xi)(A 2 £(l 4 
x 2 -U 4 X ; a/-U + 4-l 

q I^£H[1 + SGN{a_r)]^)Q_W2(Xi)+^kIl(p,k) , 
a a( « + /" ) 

( a ^ r ) 
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> 
1/2 (*/), ( « = / • ) 

2 
a4 = Gi (x,-) - ^- Qm(*,•) + - j — - — G2 (x,), 

2a/- xf-l ar 

r 4 
« 5 = 3 e _ i / 2 ( ^ ) + - Q i / 2 ( ^ ) - ^ r r G,(x,)+-G2(x,) 

9 6 = 1 
2x, zf\ _1 i_\(r I6xf 

xJ^Ur) qi{Xi)+tf-\)2ari\a + xJ^~\ 

Ql =Qi{a^r) 

16x, 
alxj-l 

G2(Xi) • 1 2 Q i / 2 ( J f / ) - - Q -

Gdxd 

1/2 (* / ) | 

(51) 

2 As a special case, Green's functions are also obtained 
for problems of (i) an elastic half-space with the traction-free 
boundary, (ii) an elastic half-space with the rigidly fixed bound
ary, and (iii) a homogeneous isotropic elastic solid. 

3 An application of the Green's functions was described 
for eigenstrain problems. 
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where SGN {a-r) takes + 1, 0 or — 1 when the sign of the value 
(a — r) is positive, zero, or negative, respectively. Also, qn(a<->r) 
means the exchange of a for r and r for a in the expression 
q„(Xj), and U(p, k') is a complete elliptic integral of the third 
kind. Herep and k' are 

Aar , ,, 4ar 
P= A 2 . * = 7 _ . - v 2 . -2- (52) (a + rf (a + rf + zf 

7 A Simple Application 

As an example of application of Green's functions we con
sider eigenstrain problems. It is well known (Mura, 1987) that 
the displacements «,- due to axisymmetric eigenstrains 

er* = e*(r, z), el = eg(r, z), e* = e*(r, z), 

yfz = y?z(r, z),y% = yUr, z), 7*0 = yteir, z), (53) 

satisfy (3) if we put - F,- instead of F, in (3). Here we used 
the engineering strains, and F, is given by 

F , = ^ - { r ( e ; - e s * ) ) +\j- (er* + 4) + (X + 2 / x ) ^ + J-yZ, 
r dr or dr dz 

F2 = ii 
d . d * 2 

F3 = \ | - (£; + eg) + (X + 2/*)f e* + ^(ry*z). 
dz oz ror 

(54) 

From the foregoing results, we see that solutions for axisym
metric eigenstrain problems can be obtained by the expression 

iif = - ( Fj(a,h)ulir,z,a,h)dQ (55) 

where Q is a domain of distribution of eigenstrains and 
ufj(r,z,a, h),(i,j= 1, 2, 3) are Green's functions for the region 
k. 

By applying the above results, exact solutions in closed forms 
will be obtained for the axisymmetric stress and displacement 
fields caused by a solid cylindrical inclusion with uniform axial 
eigenstrain 

e*z=eQ{S(z + b)-S{z-b)){\-S{r-c)}, 

er -ee - 7rz - 7re - 7zfl - « (56) 

in a future paper (Hasegawa et al., 1991). Here, S( ) is a 
Heaviside step function, e0 is the magnitude of eigenstrain, 
and C and lb are radius and length of the inclusion. 

8 Concluding Remarks 

The principle results of this paper are summarized as follows: 
1 Green's functions for axisymmetric body force problems 

of dissimilar elastic solids were derived by applying stress func
tions for body force and surface force problems of elasticity. 
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A P P E N D I X 

The following integral formulas are used to evaluate the 
integrals that appear in this paper. 

(aa)J0(ar)e-azda = -1=Q-l/2(x), 
ir\far \ Jo 

[ Ji(aa)J0(ar)e"'xzda = :rl=\ J-[\ + SGN(a-r)] 

z 
[Q-l/2(x)+^:kn(p,k)\, 

ira a + r 
r°° 1 ( x—r/a 
J aJ1(aa)J0(ar)e-°'zda = -^7=)Qi/2(x)—:r-rGl(x) lir^Jar x2-! 

r i 
/ , (aa)7, {ar)e-ada = —=Ql/2 (x), Jo ir\]ar 

a / 1 ( a a ) / 1 ( a r ) c - « r f a = p=^- -5—- G, (x), 
o lir-Jararx2-! 

f°° 1 
Maa)Mar)e~azdoL = -^br-Jarii2 

Jo Airarsjar 

+ cr2+(rz-al)SGN(a-r) 

+ z(a-r)2kU(p,k)-2arzQu2(x)-z(ai + r1)Q.U2(x)], 1 r 
—Ji(aa)J0(ar)e azda = == 

o « 2 W « r 

2G2(x) 

We can also use the following relations: 

Qm(x) =xkF(k)-y/2(x+l)E(k), 

Q.y2(x)=kF(k) 

where F(k) and E(k) are elliptic integrals of the first and 
second kinds, respectively. 
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Two-Dimensional Green's 
Functions for Elastic Bi-materials 
Two-dimensional plane-strain fundamental solutions for elastic bi-materials are de
veloped using the nuclei of strain method. The method is a reduction of the three-
dimensional approach previously derived by Vijayakumar and Cormack. The struc
ture of the three-dimensional solution is preserved and the two-dimensional nuclei 
of strain and their corresponding vector functions are reported in this paper. Ap
plication of these solutions to the boundary element method is demonstrated via a 
hydraulic fracturing example. 

Introduction 
Considering that two-dimensional analyses are often justi

fied and less expensive than three-dimensional ones, and con
sidering that most research ventures start by addressing 
problems in their two-dimensional (simplified) form, the au
thors were led to seek the two-dimensional fundamental so
lutions for elastic bi-materials. Using the three-dimensional 
solutions as the starting point, the two-dimensional solutions 
are obtained by integration of the former with respect to one 
of the axes contained by the interface and letting the limits of 
integration approach infinity (plane strain). These solutions 
are the basis of boundary element numerical techniques and 
were derived with this particular application in mind. More 
specifically, the authors are interested in the propagation of 
fractures through bonded layered media. Vertical containment 
and direction of propagation of hydraulic fractures is of pri
mary interest to the oil industry and one of the factors which 
control their behavior is the material property contrast. The 
importance of these solutions lies in the fact that the interface 
is implicitly contained in them, thus eliminating the need of 
discretization which may cause numerical instabilities and costly 
analyses (both in time and memory requirements). 

Galerkin Vectors 
Before presenting the solutions in elastic bi-materials, a brief 

introduction to Galerkin vectors will follow. A Galerkin vector 
is a vector function that satisfies a fourth-order equation and 
has as its components Galerkin stress functions (Mindlin, 1936). 
Taking as the starting point the equilibrium equation in terms 
of the displacements, u, for a homogeneous, isotropic, linear 
elastic material, we write in vector form 

V 
1 

l-2v 
Vdiv u + K = 0, (1) 
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where K is the body force vector and LJ and v are the shear 
modulus and Poisson's ratio, respectively. 

In the Galerkin vector approach, operators of order two on 
vector functions are used rather than taking the classical ap
proach of representing the displacement as the product of a 
constant and the gradient of a scalar function <j> (Westergaard, 
1952). There are two such operators in the equilibrium Eq. 
(1), namely, the Laplace operator V2 and the operator Vdiv. 
Both these operators may be applied to a vector function. The 
equilibrium equation is satisfied if (Westergaard, 1952) 

2/xu = [ 2 ( l - e ) V 2 - Vdiv]F, 

provided that 

V4F = -
K 

1 

(2) 

(3) 

The following expressions are obtained directly from Eq. (2) 
and the constitutive laws for a homogeneous, isotropic, linear 
elastic material: 

2txu = 2(1 - v) V 2X- — divF 
ox 

2,w; = 2(l •v)V2Y-— divF 
dy 

2/xw = 2 ( l - i / ) V 2 Z - — divF 
dz 

oxx=2(l-v)—-— + 
dx 

av 2y 

Lv2 

oyy = 2(1 — v) 

aa = 2(\-v) 

dy 

dV2Z 

dz 

+ M r 

'dx1 

dy 

divF 

divF 

"v a?j d i v F 

°kk = o» + o-vv + °zz = (1 + ") V divF 

, = ( ! • 

Jdv2x av2yN 

dy dx dxdy 
divF 
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„ JdV2Y dV22 
dz dy dydz 

•divF 

„ JdV2X dV2Z\ d2 ,. r 

where X, Y, and Z are the components of the vector F in the 
/, j , and k directions, respectively, and are part of a group of 
solutions known as nuclei of strain. 

Method of Images 
The method of images is a technique that uses superposition 

of known solutions to solve new problems. The method earned 
its name from the fact that combinations of known solutions 
are applied at points which are equi-distant from global axes. 
These points are referred to as object and image points. 

One of the well-known solutions obtained by this method 
is Mindlin's solution (1936) for a point force in the interior of 
an elastic half-space. Mindlin's solution is a particular case of 
the more general solution for bi-materials, where the second 
material has zero modulus (nonexistent). Several authors have 
derived solutions for point forces in the interior of one of two 
semi-infinite solids joined by a bonded interface (Rongved, 
1955), or a sliding interface (Dundurs and Hetenyi, 1965). The 
case of a bonded interface where the second material is rigid, 
i.e., an elastic half-space with a fixed boundary, has also been 
solved (Phan-Thien, 1983). Only the latter has made use of 
the nuclei of strain in conjunction with the method of images. 
All of the above solutions were obtained for point forces. 
However, some approaches to the fracture propagation prob
lem (e.g., displacement discontinuity) require solutions for 
other nuclei of strain. 

Vijayakumar and Cormack (1987a) have derived a general 
approach to obtain solutions to the bi-material problem. They 
have defined classes of nuclei of strain from which any one 
nucleus may be chosen as the singular nucleus applied at the 
object point. Each of these classes of nuclei defines a closed 
set, in the sense that when any nucleus is selected to be applied 
at the object point, the nuclei contained in the class are suf
ficient to obtain a solution, i.e., create any specified condition 
at the interface. Not only have these authors derived the so
lution for all the nuclei of strain (see Fig. Al) , but they have 
also structured the method to obtain them. A brief presentation 
of the method follows. 

Consider two independent infinite spaces with different elas
tic properties, paying particular attention to the plane z = 0 
(Fig. 1(a) and 1(b)). 

We apply the nucleus of strain of interest (e.g., Point force) 
at the object point of material 1 and a linear combination of 
all the nuclei of strain from the same class at the image point 
of material 1. 

Independently, using the same class as for material 1, we 
apply a different linear combination of all the nuclei of strain 
at the object point of material 2. Coefficients for these two 
linear combinations can be found such that specified quantities 
(displacements and stresses) are identical at the plane z = 0 of 
both spaces. 

Therefore, the positive half-space of material 1 contains the 
singular nucleus of interest, the negative half-space of material 
2 has no singularity at all since there were no nuclei applied 
within it, and the planes z = 0 of both materials exhibit the. 
same behavior, as far as selected matched quantities are con
cerned. This means that the two mentioned half-spaces can be 
juxtaposed (Fig. 1(c)), creating the solution for a bi-material 
with specified properties at the interface (e.g., bonded or fric-
tionless). 

The solution vector, s, obtained by the application of nuclei 
of strain at each point can be decomposed into three entities 
(Vijayakumar and Cormack, 1987a): vectors containing all the 
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Fig. 1 Representation of bi-material 

nuclei of strain in the class of the singular nucleus (F^, F^), 
matrices of material properties (C^) solely dependent on the 
elastic constants /x and v, and a vector containing the intensities 
of the nuclei of strain applied at the considered points. In the 
case of the object point in material 1 (singular point), the only 
nonzero entry in the vector of intensities of the nuclei of strain 
(a) is the one corresponding to the singular nucleus. In the 
case of the image point of material 1 and the object point of 
material 2, the vectors of intensities of the nuclei of strain (a 
and a, respectively) will depend on the vector a and the prop
erties of the interface; they can be represented as follows: 

1= \RA]» 
a = rX,]a (5) 

where [R^] and [T^] are called the "reflection" and the "trans
mission" matrices due to the analogy between the bimaterial 
problem and the light transmission problem in optics (Vijay
akumar and Cormack, 1987a). The matrices [R^] and [TA] 
depend on the material properties of both materials and the 
conditions set at the interface. 
Defining the solution vector as 

S ={U,V,W,axX,<Jyy,azz,TXZ,TyZ,TXy] 

we have, in material 1, 

s = FylQ4(/Ji,j'i)a + F>iCU(/Ji,»<i)a 

and, in material 2, 

s = ¥ACA(^v2W 

where 

*A = 

fAu 0 
M B 

0 iAxy 

, 

(6) 

(7) 

(8) 

*Au 
-ST 
M t 

*Axy 

cA = 

CAU 

CAV 

•^Axy 

(9) 

iAu, MD fAxy are the vectors of nuclei of strain applied at 
the object point; iAu, MD, •••» Mxy are the vectors of nuclei of 
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strain applied at the image point; CAu, CAv, „., CAxy are the 
matrices of material properties; and a, a, and a are the vectors 
of intensities of the nuclei of strain. 

Previous Solutions (Three-Dimensional) 
There are two major types of classes of nuclei of strain. The 

first creates a stress field which is axisymmetric about the 
normal to the interface. Only one class (class A) exhibits this 
property. It contains 6 nuclei of strain, among which are the 
point force and the double force, both normal to the interface. 

The second type of classes of nuclei create an asymmetrical 
stress state. These classes' contain 8 nuclei of strain. Class B 
has the point force in the x-direction (parallel to the interface) 
as its basic nucleus and class C has the point force in the y-
direction (parallel to the interface) as its basic nucleus. Class 
C can be obtained from class B by a simple interchange of the 
x and y variables and the i and j unit vectors. All of these 
nuclei of strain have to be scaled (see Tables 1 and 2) to enable 
the decomposition of the solution as shown in the previous 
section. 

Because these classes do not contain all the necessary nuclei 
to form the "Displacement Discontinuity" solutions, four more 
classes were introduced (Vijayakumar and Cormack, 1987a). 
They were obtained by differentiation of the nuclei of strain 
in classes B and C. They have as their basic nuclei the double 
force in the x-direction (class D) and the .y-direction (class E), 
the double force in the .^-direction with moment about the z-
axis (class F) and the double force in the .y-direction with 
moment about the z-axis (class G). As before, nuclei in classes 
E and G can be obtained from the nuclei in classes D and F, 
respectively, by interchanging x and y variables i and j unit 
vectors. 

Although there are seven classes of nuclei of strain, there 
are only two sets of reflection and transmission matrices. One 
set is associated with class A and a second set associated with 
classes B through G. The reason for this is that class C is 
identical (except for axes) to class B and classes D, E, F and 
G were obtained from classes B and C, The same is true for 
the material property matrices. Reflection and transmission 
matrices exist for two different conditions at the interface. The 
first is a bonded interface, i.e., the displacements, the normal 
stress across the interface and the shear stresses are the same 
on both sides of the interface (Vijayakumar and Cormack, 

1987a). The second is a frictionless interface, i.e., the dis
placement normal to the interface and the normal stress across 
the interface are conserved; the shear stresses are equal to zero 
(Vijayakumar and Cormack, 1987b). 

Two-Dimensional Solutions (Plane Strain) 
The structure of the two-dimensional solutions is the same 

as that of the three-dimensional ones. The material property 
matrices and the reflection and transmission matrices do not 
change. This shows the advantage of using Vijayakumar and 
Cormack's structuring method for obtaining the solutions. 

Therefore, for the two-dimensional plane-strain case, only 
the nuclei of strain need to be derived. Rather than trying to 
find the different nuclei of strain by solving the bi-harmonic 
equation, we can use the three-dimensional nuclei as a starting 
point. By integrating the three-dimensional nuclei of strain 
with respect to an axis parallel to the interface, from - oo to 
+ oo, we generate a continuous line of nuclei in that direction, 
thus a plane-strain condition on the plane whose normal is the 
axis of integration. Therefore, choosing the .y-axis as the axis 
of integration, we obtain 

• l im F3Ddy (10) 

where 
F3D is any three-dimensional nucleus, and 
F2£i is the two-dimensional nucleus corresponding to F3D. 

Note that because of the plane-strain condition the point force 
in the v-direction, the double force in the .y-direction and the 
double forces with moment about the z-axis cease to have any 
meaning. This is reflected in the integration of the correspond
ing three-dimensional nuclei, as they either yield null two-
dimensional nuclei or are oriented in the .y-direction. There
fore, the classes of nuclei C, E, F, and G are not required in 
two dimensions. Also, as a result of the plane-strain hypothesis, 
the displacement in the j'-direction and the stresses on the y-
plane for all solutions are 

v = 0 
Oxy=Ozy = 0 

Oyy=v(<Jxx+(Jzz). (11) 

The nuclei of strain for classes A '(unsealed), A, B, and D 

Table 1 Nuclei In class A' (unsealed), two-dimensional 

Type 

Functional form 
at object point 

Functional form 
at image point 

z = — c 

Physical 
significance 

A'l 

A'2 

A'3 

A'4 

A'S 

A'6 

—k r2 log r 

- k 2 ( z - c ) l o g r 

f / « \ 

+(z-c)(\ogr-l)\ 

( / x 

T~'~ "' '\r-z+ 
-{z — c)2 -£ 2 logr> 

—k 2 log r 

2*(*-c) 
r2 

—k r2 log r* 

-k2 (z+c ) log r 

f t x \ 
\ \T + Z+Cj 

-(* + c)(log?-l)j 
\ r / x 

+(z + c)1+x2logr\ 

- k 2 log 7 

, 2z{z+c) 
r2 

0 

Single force in 
z- direction 

Double force in 
the z-direction 

Centre of dilation 

Line of centres 
of dilation* 

Doublet with axis 
parallel to z-axis 

Multiplet 

* •r=(x2 + (.z + c)2)! 

' In this case, the line extends from z = c to z = +oo for nucleus at object and from z = — c to 

z = —oo for nucleus at image point. 
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Table 2 Nuclei in class A (scaled), two-dimensional 

TYpe 

Functional form 
at object point 

z — c 

Functional form 
at image point 

z = —c 

Multiplication 
factor 

AX 

A2 

A3 

A4 

A5 

A6 

—k r2 log r —k r2 log r 

—\z2c(z — c ) log r —k2c(^4-c) log? 

—kc< 2x arctan [ 1 kc< 2a; arctan ( | 
\ \r-z+cj \ \r+z+cj 

+(z - c ) ( l o g r - 1) 1 -(z + c ) ( l o g r - 1) 1* 

-k< 2x(z — c) arctan I 1 k< 2x(z 4- c) arctan I ) 

— (z ~ c)2 — x2logr > +(z 4- c)2 + x2logr \ 

—k 2c2 log r —k 2c2 log T 

2<?*(* 2c2^(-z + c) 

Table 3 Nuclei in class B (scaled), two-dimensional 

Type 

Functional form 
at object point 

z = c 

Functional form 
at image point 

z — — c 

Physical 
significance 

Bl —i r2 log r 

—k 2ccc log r 

•i2c(z — c) logr 

~ i i2 log r 

—k 2CE log r 

—\2c(z+ c ) l o g r 

x-direction 

Double force in 
the ^-direction with 
moment about y-axis 

Double force in 
the :c-direction with 
moment about ^ax i s 

Bh 

—ic< 2x arctan I ) ic< 2x arctan [ 1 
^ \ r - z + cj ( \r+z+cj 

+(z-c)(logr-l)l -(z + c) (logr -1)1 

~i< 2x(z — c) arctan I ) i< 2x(z + c) arctan [ | 
\ ^ \r-z+cj \ v ' \T+Z + C) 

-(z-c)2 -x2\ogr\ +(z+c)'*+x2logr\ 

-ka: < 2x arctan [ J k l < 2x arctan ( J 
( \r-z+c/ ( \r+z+cj 

- ( ^ + c ) ( l o g r - l ) l 

Bl 

B8 

+(z-c) ( logr - 1 ) 1 

—12c2 l ogr 

^2<?z(z-c) 

-\2<? l o g r 

2<?z(z + c) 

Linearly varying line 
of doublets parallel to 
x-axis along 2-axis * 

Line of double forces 
in ^-direction with 
moment about y-axis 
placed along z-axis ' 

Doublet with axis 
parallel to x-axis 

Multiplet 

In these cases, the line extends from z = c to z = +oo for nucleus at object and from z — — c 

to z = —oo for nucleus at image point. 

are shown on Tables 1, 2, 3, and 4, respectively, and their 
pictorial representations are shown in Fig. Al. The two-di
mensional f and f vectors for classes A and B required for the 
structured solution method (see Eqs. (6)-(8)) are reported in 
the Appendix. The ( and f vectors for class D can be obtained 
from class B by differentiation with respect to x. 

Application 
In the petroleum industry, one of the most widely used 

methods for enhancing production is the hydraulic fracturing 
process. The method involves packing off a section of a 
borehole in the "pay zone" (layer containing the hydrocarbon) 
and hydraulically pressurizing it until the formation fractures. 
The fracture is then propagated by keeping the borehole pres
surized, typically by controlling the flow rate at the surface. 
During the extension phase of the fracturing process, a prop-

pant (e.g., sand) is mixed with the fracturing fluid to prevent 
the closing of the fracture once the well is depressurized. 

In modeling the fracturing process, there are a number of 
complex mechanics aspects that need to be considered. These 
include: response of the formation to the creation, pressuri-
zation and extension of the fracture, flow of fluid in the frac
ture, mechanics of fracturing at the fracture tip, diffusion of 
the fracturing fluid into the formation, influence of different 
concentrations of proppant on the properties of the fracturing 
fluid, etc. 

In order to simplify the design process, the geometry of the 
hydraulically created fracture is often assumed a priori. For 
instance, in the case of layered media, perfect containment is 
often assumed, which implies a rectangular-shaped fracture, 
aligned with the major in situ principal stress. Also, the in
fluence of the contrast in elastic stiffness between the pay zone 
and bounding layers is usually ignored. By using the solutions 
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Table 4 Nuclei in class D (scaled), two-dimensional 

Type 

Functional form 
at object point 

Functional form 
at image point 

Physical 
significance 

Dl 

D2 

DZ 

Di 

£>5 

IX 

m 

D8 

—i 2x log r 

- k c ^ l o g r - f - ^ - f 

2cx{z - C) 

—i 2x log r 

f 2x 2 l 
- k c < 2 1 o g f + ^ - S 

, 2cx(,s + c) 

Double force in 
^-direction 

r2 

i4carctan I 11 1 —i4carctan f ) 
\r~ z + cj Vr4- z + cj 

—i< A(z — c) arctan f ] i< A(z + c) arctan f I 
\ v J \ r - z + cj \ v ' \r + z + cj 

-21ogr } +2 log? } 
-k^ 6x arctan ( I k< 6x arctan j = I 

\ \ r - z + cj \ \r+z + cj 

+C*-c)(logr-l)J 

,2<?x 
' r2 

- ( * + c ) ( l o g r - l U 

. 2c?x 
- I -

, , f 2z Ax*z ) , , f 2z 4x*z 1 

presented in this paper, it becomes much more practical to 
solve for the geometry of the fracture, as the computational 
effort in carrying out a stress analysis of elastic bi-materials 
is greatly reduced. 

A numerical model based on the displacement discontinuity 
method has been developed to investigate the influence of 
bonded interfaces on fracture propagation. The method uses 
for Green's functions the singular displacement discontinuity 
solutions for bonded bi-materials. These are obtained by linear 
combinations of the solutions presented in the previous section. 
A boundary element, weighted residuals approach is employed 
in the numerical scheme for the stress analysis and a finite 
element, parallel plate model is used for the fluid flow in the 
fracture. The effect of a material of different stiffness at a 
given distance from a fracture parallel to the interface was 
investigated for a range of stiffness ratios and distances from 
the interface (see Fig. 2). Of interest are the effects on both 
the propagation path and the propagation pressure. Only the 
former is presented in this paper. 

Three ratios of 'distance to interface' to fracture half-length, 
25/L, were analyzed for material contrasts (£*/£?, where 
E*=E/(\-v2)) of 0.1, 0.5, and 2 when the fracture lies in 
material 1. 

The presence of a stiffer material 2 drives the fracture away 
from the interface in search of a more compliant zone. Ulti
mately, the fracture appears to have a preferred angle of prop
agation for each E*/El ratio, which is independent of its initial 
distance from the interface (Figs. 3 through 5). When the angle 
"arctan(25/L)" is smaller than the preferred angle of prop
agation, i.e., the fracture is close to the interface, it feels the 
second material in a much stronger way and the initial prop
agation angle is steeper than the asymptotic value. When the 
angle arctan(25/X) is greater than the preferred angle of prop-, 
agation, the initial propagation angle is shallower than the 
asymptotic value. This behavior is analogous to the behavior 
of parallel fractures (Jeffrey et al., 1987), i.e., the fractures 
have a tendency to drive each other apart at a constant angle 
which depends on the original distance between them. 

Conversely, when the second material is softer than the one 
containing the fracture, it attracts the fracture towards the 
interface in the same manner the stiffer material drove it away, 

| ffj, 

L 1 

Vxx 

, material 1 
'"^^^^^^^s^W^mMMM^^WMMmaterial 2*#:>>:-: 

Fig. 2 Fracture parallel to i iterface 

i.e., the fractures closer to the interface will start propagating 
at a steeper angle than the fractures further away from the 
interface. The asymptotic propagation path for fractures grow
ing towards a softer material is right along the interface, with
out crossing it. 

Conclusion 
Two-dimensional Green's functions for elastic bi-materials 

have been derived by reducing the three-dimensional nuclei of 
strain through an integral procedure. The availability of these 
fundamental solutions is crucial for boundary element tech
niques. 

In the case of bi-materials, the conventional method of so
lution, using the boundary element method, is to discretize the 
interface with a double layer of elements (geometrically coin
cident), one for each material. The desired interface behavior 
is then imposed on the interface elements. This results in very 
large systems of equations due to the need to extend the dis
cretization well away from the zone of interest. However, the 
most serious deficiency of the discretization method is that 
numerical instabilities develop as the fracture gets closer to the 
interface, requiring smaller elements and resulting in loss of 
accuracy. 

The solution presented in this paper overcomes the time and 
storage requirements for the large systems of equations gen
erated by the discretized method of solution as well as the 
numerical instabilities and loss of accuracy which are present 
in these conventional methods. 
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vectors of the matrix F^ are obtained by replacing f^'s by f '̂s 
and r by r and assuming the lower sign wherever the dual sign, 
i^e., (±) or (=F), appears. The vectorcomponents of matrix 
F,4 are obtained by replacing f^'s by f^'s and f by f and as
suming the upper sign wherever the dual sign appears. 

r={x2+(z-c)2)l/2 

r=(x2+(z + c)2)U2 
(Al) 

IT _ 
*Au- ± 2arctan I -

r±z + c 

x(z±c) xc 2x(z±c) c 

2x(z±c)c2 ±2x<? %xz(z±c)2<? 

f l 8 = [0,0, 0,0, 0,0,0] 

- ( z ± c ) 2 (z±c)c ĉ  2(z±c)3c 
~lXir' fl > j>2 ' f» f* 

2(z±c)2c2 2(z±c)c3 8z(z±c)3c2 

P* 

cT _ lAxx 
(z±c) c 2x2(z±c) 2x2c 2(z±c)2c 

r r r • r r 
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A P P E N D I X 
The vector components of the matrices F^ and F^ are given 

below in compact form. The appropriate expressions for the 

8(z±c)3c2 ±8(z±c)V 2 
7e , —6 . - arctan „ 
r r x \r±z + c 

=F 

(z±c) 
- 2 

r 

(Zi 

f2 

C 

r2' 
2(z±c)c2 

f* 
8(z±c) 

f6 

(z±c) 
"2 ' 

r 

» 

t 

c 
p2, 

--c) .2 _ _ / x \ 48x2z(z±c)V 
x \r±z + cj 

(z±c) c 2(z±c)2c 
~2 > «2> »4 > 

r r r 
±2c3 2(z±c)2c 2(z±c)c2 

~4 > ~4 » «4 

r r r 
±8(z±c)V 2 / 

/•" 

±2c3 

• f* • 

x \ 

f6 ,xax*anyf±z + cj, 
2 ( x \ 
x \r±z + c) 

2(z±c)3 2(z±c)2c 
«4 » ..4 » 

r r 
2(z±c)c2 ±2<? 8(z±c)4c 

«4 » «4 > „6 > 
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x_ 2x(z±c)2 2x(z±c)c Ixc2 8x(z±cfc 
r r r r r 

8x(z±c)2<? ±8x(z±c)c3 48xz(z±c)V~ 

lBzz~ 
x lx{z±cf_ 2x(z±c)c 2xc2 8x(z±c)3c 

8x(z±c)2cz 8xz(z±c)c2 48xz(z±cf<?' 

f £ *= [0,0, 0 ,0 ,0 ,0 ,0 ,0 ] 

^ = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ] . 

The appropriate expressions for the vectors of the matrix 
FB are obtained by replacing fB's by fa's and fbyr and assuming 
the lower sign wherever' the dual sign appears. The_vector 
components of matrix FB are obtained by replacing f^'s by 
fB's and f by f and assuming the upper sign wherever the dual 
sign appears. 
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- 2 ' ~2> - 4 > p4 > p4 > 

2(z±c)c2 Izc2 8x2(z±c)2c 8x2(z±c)c1 

r r r r 

8x2z<?- 8z(z±c)2c2 -(z±c) 48x2z(z±c)2c2 

-lnr, 
e x 2 x2c (z±c)c 

r (z±c)r r (z±c) 
c2 2x2(z±c)c 2x2c2 2z{z±c)cl 

(l + l n ^ , T ^ T ( 1 + l n 0 . 8 ^ ( ! 6
± C ) c 2 

(z+c) 

{£,= [0,0, 0,0, 0,0,0] 
~T _ \x(z±c) xc 2x(z±c)2c 2x(z±c)c2 

f° ' r° 
^ = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ] 

f ^ = [ 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0]. 

Al - Single force In 
z-direction 

A2 - Double force in 
the z-direction 

T2xc J / x \ 8xz(z±c)2(? 

lByy~ 

—A—, =F2arctanl „ 
r \r±z + ct 

x_ 2x^_ 2x(z±c)c 2xc2 8x*(z±c)c 

8xV 8xz(z±c)<? 8x(z±cfc1 
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Fig. A1 Pictorial representation of nuclei of strain 
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On the Role of Elastic Constants in 
Multiphase Contact Problems 
For a plane composite body consisting of an arbitrary number of different linearly 
elastic constituents under conditions of plane deformation or plane stress, the min
imum number of required elastic constants describing the stress field is determined. 
For conditions in accordance with the assumptions of Michell and Dundurs, i.e., 
for prescribed surface tractions and no net forces on internal boundaries, the state 
of stress in a body involving N different phases is found to be determined by only 
2N-2 combinations of the elastic constants. This result holds for conditions of 
complete adhesion and frictionless slip at the interfaces of the materials. 

1 Introduction 
Recent progress in materials science, the development of 

new sophisticated application-designed materials, and espe
cially the unique qualities of composite materials, have given 
a renewed interest in the problems arising when several dif
ferent material phases interact with each other. Examples are 
load transmitting joints, stress concentrations, interface cracks, 
multiwedge problems, inclusions, contact problems, etc. While 
studying multimaterial problems, one aspect of particular in
terest is the influence of the constituents' material properties 
on the state of stress due to external loading. 

Many problems are accurately described with conditions of 
plane strain or plane stress. Linear plane elasticity is conven
iently formulated through complex variables (Muskhelishvili, 
1953). For an isotropic plane linearly elastic body loaded with 
surface tractions, the state of stress is independent of its elastic 
parameters under circumstances given by Michell (1899): viz., 
in the absence of body forces and if the resultant force, but 
not necessarily the couple, vanishes over each boundary sep
arately. With unbalanced forces on holes, the solution contains 
terms involving Poisson's ratio (c.f., Muskhelishvili, 1953). 

An interesting and very useful result concerning composite 
bodies consisting of two linearly elastic isotropic phases was 
found by Dundurs (1967). Under the same conditions as stated 
in Michell's paper, the state of stress in such an aggregate 
depends on only two variables: viz., two combinations of the 
four elastic parameters involved. In an illuminating discussion 
it was shown how these combinations can be used for classi
fying material combinations with regard to stress singularities 
(Dundurs, 1969). 
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Plane conditions can be achieved only in plane deformation 
or generalized plane deformation when two or more dissimilar 
materials are involved. With a global state of plane stress, 
generally a three-dimensional state of stress would appear in 
the vicinity of a material interface. But by means of Saint-
Venant's principle, the effects of a disturbance at a contact 
zone decay with increasing distance. A comprehensive inves
tigation concerning Saint-Venants principle was given by Hor-
gan and Knowles (1983) and, furthermore, updated by Horgan 
(1989). 

In the present paper, heterogeneous systems are considered 
which could be regarded as being in states of either generalized 
plane strain or generalized plane stress. The thickness of the 
systems considered is thus assumed to be constant and either 
very large or very small in comparison with all other dimen
sions, which includes the radii of curvature of interface bound
ary contours. All participating materials are supposed to be 
isotropic and linearly elastic. The heterogenous systems, the 
aggregates of different material phases, can here be arbitrary 
in shape and in diversification of the constituents involved and 
complete adhesion as well as frictionless slip between them is 
accounted for. The study is focused on conditions similar to 
the ones stipulated by Michell (1899) and Dundurs (1967), i.e., 
loading by prescribed surface tractions with resultant forces 
vanishing over each boundary. 

The analysis in the following sections adopts the notation 
of Dundurs (1967, 1969). Some minor additions of sub and 
superscripts have been made to distinguish between different 
systems of reference such as material phases, domains, and 
coordinates. In fact, Section 2 is merely a recapitulation of 
the proof performed by Dundurs (1967), where some steps 
important to the succeeding analysis have been stressed. 

The results found in this paper form a general theorem 
concerning plane multiphase problems regarding the minimum 
number of independent variables necessary to describe the state 
of stress. Under the preconditions mentioned above, the state 
of stress in a composite with N different phases is determined 
by only 2N-2 combinations of the elastic parameters. The 
results of Michell and Dundurs are contained within this for
mula; they refer to N= 1 and N= 2, respectively. 
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2 Continuity Conditions Between Two Phases in 
Contact 

It is well known that in a plane problem, the state of stress 
can be expressed in terms of the Airy stress function $ involving 
two analytic functions 4>(z) and x(z)- Any stress function is 
expressible in the form 

# = Re[z<«z) + x(z)]. (1) 
Here, Re denotes the real part. With the notation 

dxiz) 
Hz)--

dz 
(2) 

(3) 

the components of the displacements are given by 

2 n(ux +iuy) = K<j>(z) - z<S>' (z) - ttz), 

whereas the stress components are determined by the equations 

ax + ay = 2[4>'(z) + V^)}, (4) 
oy - ax + 2iTxy = 2[z<t>" (z) + i' (z)]. (5) 

The elastic constants here are the shear modulus fx, and K = 3 - 4v 
for the plane deformation and K = (3 - v)/(l + v) for plane stress, 
with v denoting Poisson's ratio. 

If the displacements are prescribed along an arc s of the 
boundary, the boundary condition on the complex potentials 
is 

K<l)(z)-z4>'(z)-W) = 2iilux(s) + iuy(s)]. (6) 
When tractions Tx and Ty are specified at the boundary, the 

proper conditions on the complex potentials at the boundary 
are expressed in terms of the tractions acting on the boundary 
integrated along the arc s, i.e., resultant forces along the arc. 
These integrated take the form 

i ( [Tx< 
•in 

Hz) + zd>'(z) + Uz)+A = i\ [Tx(s) + iTy(s)]ds. (7) 

The arc coordinate s in Eqs. (7), (8) must be chosen so that 
the material is on the left when moving in its positive direction. 
The potentials describing the state of stress are not unique. 
When integrated along s as in Eq. (8), the lower integration 
limit, viz., the origin of 5, yields the constant A. This constant 
depends on the choice of potentials and the location of the 
origin of s. 

In a plane problem with two different phases in contact, the 
continuity conditions at the interfaces depend on whether there 
is complete adhesion between the phases or not. The present 
analysis requires that the zones of contact are known, and 
hence separation or load-dependent slip is excluded. 

For a bonded interface the requirements are that the dis
placements and the tractions are continuous at the interface. 
With subscripts 1 and 2 referring to the two phases, this is 
expressed as 

(ux + iuy)l = (ux + iuy)2, (8) 
(Tx+iTyh=-(Tx+iTy)2, (9) 

at all common boundaries. Using the same arc coordinate s 
for both materials Eqs. (8) and (9), the continuity conditions 
reduce to the following conditions on the complex potentials, 
c.f., Eqs. (6), (7) 

MI 
fo^fe) -Z4>{(Z) - Uz)] = *2<l>2(z)-zte(.z) - fa{z), (10) 

<Mz)+zM (z) + fa(z) +Ai = Mz)+z<t>i (z) + fate)+A2 (11) 
where the sign of the right-hand member in the latter equation 
is shifted due to the fact that the definition of s is reversed 
for one of the phases. 

In general, the constants Ai and A2 are determined by the 
choice of potentials and origins of the arc coordinate 5. It is, 
however, possible to add terms to the complex potentials of 
the form 

, J 

- * • x 

Fig. 1 The conditions at one boundary of a plane body 

</>(Z) = T, ^(z) = n , (12) 

where 7 is an arbitrary complex constant without changing the 
displacement and stress fields in order to change the constants 
A\ and A2. It is hence possible to make the two constants Ax 
and A2 cancel in Eq. (11). 

A multiply connected region of a phase has several contours 
and boundary and continuity conditions need to be formulated 
at every one of these. The constant A in Eq. (7) can be adjusted 
at will, as shown above, for only one of the boundaries, for 
all other contours it is settled by the choice of the origin of s. 

If the resultant vectors of tractions vanish on every hole in 
the composite body, the integral 

(Tx + iTy)ds (13) 

vanishes on every closed contour S within the body. The value 
of the line integral between two coordinates z° and z1 

.A 

(Tx + iTy)As (14) 

is thus path independent. For a particular choice of origins of 
the arc coordinates s, viz. z° (at the outer boundary) and z1 

at another (internal) boundary, the corresponding constant A1 

is given by 

Al-A°=-[^+z^m + fate)]=-i\o(Tx+iTy)ds. (15) 

It is independent of the path L from z° to z1 but depends on 
the locations of z° and z , see also Fig. 2. For the formulation 
of boundary conditions at the inner boundary, it is always 
possible to modify the potentials for the inclusion phase in the 
manner of Eqs. (12) in order to make A\ equal to A2. This 
process can always be repeated to account for inclusions inside 
inclusions, for intrusions, holes, etc. 

With the notations 0, = z0/(z) + iA/(z) and r2i=/Lt2/Vi. Eqs. 
(10) and (11) may be written as 

r2i«i - r 2 I 

1 1 = 
~K2 - f 

1 1 
<t>2 

J2_ 
(16) 

After solving 0i and 6\, the relations between the two sets 
of complex functions can be written as 

= 
«12 *12 

_Cl2 dl2 

4>2 
(17) 

where 
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Fig. 2 Arc coordinates s', origins z' and integral path L for a body with 
inclusion 

«12 = 
r 2 i + K2 

r21o, + i) bn = 
1 

r2i(*i + i) 

r2i/ci-K2 
Cl2 = -

r2i*i + i (18) 
r21(K, + i ) ' r21(Kl + i) 

Obviously, these four combinations of elastic constants cannot 
be chosen arbitrarily since 

ci2= l - a i 2 , dn=l-bi: (19) 

For each isolated domain A: of a phase, the state of stress is 
defined by a new set of complex potentials <j>k(z) and \pk(z). 
The conditions of continuity between every one of these do
mains and the other surrounding phase can thus be formulated 
in the same manner as stated in Eq. (16). 

The implication is that if no net forces appear on internal 
boundaries, the state of stress in a plane problem, with two 
different materials, depends on only two combinations of elas
tic constants. 

For a perfectly smooth interface, i.e., if there is no friction 
between the two phases, the normal components of tractions 
and displacements are continuous, and the tangential com
ponent of traction vanishes while tangential displacements may 
be discontinuous over an interface provided no separation 
occurs. Appropriate formulas for the displacement and stress 
components are given by 

2n(un + iut) = e-'°'[K<t>(z)-z<t>'(z)-Mz)], (20) 

and 

T„ - i T, = <t>' (z) + <t>' (z) - eaa[z4>" (z) + +' (z)]. (21) 

Here, subscripts n and / refer to normal and tangential direc
tions, respectively, and the angle a is taken as defined in Fig. 
1. Proceeding in the same manner as for the bonded interface 
but omitting the details, one finds, again, that all boundary 
conditions can be expressed using only two combinations of 
elastic parameters. It has also been shown that for slip between 
the phases, with a law of friction relating tangential to normal 
tractions at interfaces, no elastic constants appear when ex
pressing this condition in terms of the complex potentials (Dun-
durs, 1967). However, the extent of such slip zones may depend 
on the level of loading, and hence these kinds of considerations 
have to be treated separately since the problem becomes non
linear. 

The results so far are well known and are often used in 
various kinds of applications. They were first revealed by Dun-
durs (1967) who proposed two convenient combinations r/, 8 
of constitutive parameters defined as 

""712 = -
r12K, + i 

Sl2 = 
r2 i + K2 

(22) 
K2 + 1 ' " " K2 + 1 

In a subsequent publication he introduced new combinations 
a, (3 often referred to as Dundur's constants (Dundurs, 1969) 
here with F21 =/L*2/(UI, 

.r2i(«i + i)-(K2+i) 0 r21fa-i)-fe-i) 
a i 2 = 

r 2 1 o , + i) + (K2 + i ) ' 0l: 
r21(«i + i) + (K 2 +i ) ' 

(23) 

Fig. 3 Three phases in contact of which two are completely separated 
by the third intermediate phase 

which have the advantage of changing sign but preserving the 
magnitude when the labeling of phases is shifted. 

3 Relations for Three Phases 
While dealing with contact problem involving more than 

two phases, the question arises whether it is possible to reduce 
the required number of elastic constants in a similar way. 

Introducing three different phases denoted by subscripts 1, 
2 and 3, the state of stress in every isolated domain can be 
expressed in terms of two complex potentials. Three materials 
provide three contact possibilities. At each interface the po
tentials for the two phases are related by conditions of con
tinuity of displacements and resulting tractions (for complete 
adhesion); they are stated by Eqs. (24), (25) with i, j= 1, 2, 3. 

/*/ [KMZ) - z<t>! (z) - friz)) = KJ4>J{Z) -z<t>j (z) - i£,(z), (24) 

4>,{z) + z4>l (z) + Mz) + A, = <t>j(z) + zty (z) + Uz) + Aj. (25) 

It needs to be shown that it is possible to adjust the potentials 
in order to make the complex terms At and Aj equal in each 
of Eqs. (25) for particular choices of origins of the interface 
arc coordinates s. 

If the potentials for a phase at the outer boundary C°, 
arbitrarily labeled as 1, are adjusted to give 

Uz°) + z°H(zu) + h(^j = 0 (26) 

for a point z0 at the boundary taken as origin of an arc co
ordinate s° (that is, the complex constant A° is zero), then the 
constant A\ for another point z ' at any other boundary C1 is 
given by Eq. (15). Suppose that the boundary C1 is an interface 
between phase 1 and phase 2 or phase 3. It is always possible 
to make the constants terms A\ or A\ equal to A\ for a co
ordinate z1 at the interface by adding terms of the type given 
in Eqs. (12) to the potentials <fo(z), ^i(z) or </>3(z), faiz). This 
is chosen as origin for the arc coordinate S1 when formulating 
the continuity conditions. 

For a configuration with tree phases, of which two are sep
arated completely by the third intermediate phase, i.e., if there 
is no contact between, say, phases 1 and 3, Dundurs' for
mulation would apply directly. Only two sets of contact con
ditions are needed and thus, in all, four constants would be 
sufficient to determine the stress field, c.f. Fig. 3. Also, for a 
composite body with each boundary of every domain of a 
phase in contact with only one other phase, it is sufficient to 
adjust the potentials once, since conditions of continuity can 
be expressed with the same arc coordinate 5 around the whole 
closed boundary loop. 

Consider now a configuration with all three phases in mutual 
contact and where at least one point z1 exists, which is common 
to all three phases in Fig. 4. If the potentials </>2(z), i^2(z) and 
4>i(z), ^3(z) are adjusted to make ^42 and A\ equal to A \ at that 
particular point z1, it is obvious that the constant term also 
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Fig. 4 Three phases in mutual contact and with a point z' common to 
all domains 

Fig. 5 Three phases in mutual contact but without any common point 

vanishes in Eq. (25) when formulating continuity conditions 
between phases 2 and 3 when zl is taken as origin for s3. 

With the three phases in mutual contact but without a com
mon point—that is, if there are holes in the body—one origin 
is not sufficient to formulate the problem. A possible config
uration is shown in Fig. 5. Assume that 4>2{z), fate) are adjusted 
for an origin zl common for phases 1 and 2 while 4>Az), \p}(z) 
are adjusted accordingly for z2 on the interface between phases 
1 and 3. The constants A2 and A\ are given by Eq. (15). These 
two differ, provided there are surface tractions on the hole 
boundary. This follows by taking the (arbitrary) integral path 
from z° to z2 through zl. 

Al ii (Tx + iTy)ds-i\ (Tx + iTy)ds 

•'I = Al i (Tx+iTy)ds. (27) 

A new arc coordinate s3 with origin z3 is needed to formulate 
continuity conditions between phases 2 and 3. The traction 
resultants acting on phases 2 and 3 along an arc s3 can be 
expressed taking z1 and z2 as starting points instead (and using 
s[ and s2). The resultants of tractions Tx and Ty acting on phase 
2 involve the integral 

„ 3 . ( r x + i7;)2d5J <t>i(z)+z<t>2(z) 

+ fati)+Ai
2-i\ (Tx + iTy)3ds2 (28) 

Acting on phase 3 we have 
*3 

'1 i (Jx + \Ty)lds3 = 4>i{z) + z4>i{z) 

+ fa(z) + Al-i\ (Tx + i Tyhds2. (29) 

Expressed in terms of the complex potentials, continuous trac
tions along s3 require (c.f. Eq. (9)) 

•r Mz) + z4>i(z) + Hz) + A2-i\ (Tx + iTy)2ds 

= Mz) + z<t>{(z) + Mz)+A2-i\j {Tx + iTy)3ds2. (30) 

With Eqs. (15), (27) there follows that all constants in Eq. (35) 
above cancel if 

,3 _ ,2 A 

J Z nZ r*Z 

^Tx + iTy)2ds + i^ ^T. + iT.hds + i^ ^Tx + iTy)lds = 0. 
(31) 

This is true if the resultant of the tractions acting along the 
closed curve z1 — z3 —z2~z l vanishes, i.e., if no net forces 
appear on the hole boundary. 

In the same manner as above, it can be shown that if the 
potentials are adjusted to make the constant term in Eq. (25) 
vanish at one point and at one interface, they automatically 
have the same feature for any other choice of interface arc 
coordinate and origin. 

Proceeding in the same manner as in the preceding section, 
the continuity conditions at an interface produce, for each set 
of possible material contact combinations, two relations among 
these potentials involving four constant of which two are mu
tually independent. 

For contact between materials / and j , the two constants 
could be defined according to Eqs. (17), (18) with ry-,- = /*//*,• 
and i,j= 1, 2 or 3 

Tji+Ki 1 
fl"-r,,(K,+ i)*6t f-r,,fo+i)- (32) 

Three materials provide three contact possibilities, and con
sequently three sets of constants given in Eqs. (32) involving 
in all six constitutive parameters, namely ai2, bi2, «i3, &13, and 
«23. &23- Of interest in this context is whether these can be 
chosen independently, or if there are any relations among them. 
(They depend on five different constitutive parameters since 
only the stiffness ratios are relevant.) 

One finds that only four constants are sufficient to express 
the continuity conditions since two independent relations exist 
among the original six constants. A possible set of correlations 
would be 

«2s(«12 - bl2) - (fl13 - 612) = 0 , 

b2i(al2-bl2)-(bn-bl2) = Q. 

(33) 

(34) 

When, in a similar manner, extending Dundurs' constants to 
refer to contact between phases / and j 

! > ( * , • + 1 ) - ( K , + 1 ) 

" r > , + l) + 0cy+l) > Pu = 
r / ; ( K , - i ) - ( K ; - i ) 
r > , - + i ) + 09+i ) 

(35) 

three other sets of combinations ai2, &n\ «i3.1813; and a23, fe 
arise. These are related to the original constants a-,j, btj in Eqs. 
(32) as follows: 

1 -18;/ . cm - (3jj 
an = l+a,v 

b- = ^ 11 l + « „ 
(36) 

Two independent relations among the extended set of Dun
durs constants can now be determined by, e.g., substituting 
Eqs. (36) into Eqs. (33), (34). After some rearrangement, they 
could be expressed as 

ai2ai3a23-ai2 + ai3-a23 = 0, (37) 

(an - «i2)fo - (A3 - 012 + ai20i3 - ai30i2)a23 = 0. (38) 

The relations among the Dundurs' constants Eqs. (37), (38) 
can be expressed in different ways. Noting that 013= -a3 i , 
Eq. (37) reverts back to itself upon relabeling of the phases 
while Eq. (38) does not. However, it is possible to find other 
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relations with this self-preserving feature as linear combina
tions of Eqs. (37), (38). 

Again, if there are no net forces on internal boundaries, it 
is possible to make the constant terms in Eq. (7) Au A2, and 
AT, cancel for the three phases. The relations among the com
plex potentials due to continuity conditions, and thus the state 
of stress in the whole three-phase composite body, depends 
on only four combinations of elastic parameters. 

4 The General Case With an Arbitrary Number of 
Phases 

For a composite body consisting of Nelastic materials, there 
are at most (N2-N)/2 different combinations of phases in 
contact with each other. At every interface, four conditions 
of continuity have to be fulfilled. These conditions depend on 
only 2N elastic constants. The state of stress in such a body 
with prescribed surface tractions could be expressed using 2N-
1 combinations of the elastic constants. If, however, no net 
forces are present on internal boundaries in the body, the state 
of stress is determined by only 2N-2 combinations. To show 
this we proceed in the following manner: 

In every isolated domain of a phase the state of stress is 
governed by a set of complex potentials. At every contour of 
such a domain, which it shares with another domain, condi
tions of continuity have to be established. Expressed in terms 
of the potentials, these are an equality for every z along an 
arc s coinciding with the common contour (c.f. Eqs. (10, 11)). 
The conclusions in Sections 2 and 3 rely on the possibility of 
letting the constants Aj cancel out in the equations relating 
stresses across an interface, viz. Eqs. (11), (25). In Section 2 
it was shown that with two different phases it is always possible 
to achieve this by adjusting the complex potentials in one of 
the phases. In Section 3 it was proved that once this is done 
for two domains in contact, the constant terms vanish auto
matically also at the boundaries, which these two share with 
a region of a third phase. 

The difference between the constant terms in Eq. (7) for 
different choices of origins s is solely dependent of the integral 
of tractions acting along any contour between these coordinates 
(see Eq. (15)). By successively adjusting the potentials for a 
particular arc coordinate at the interface in order to make the 
constants equal, the potentials in every single region are ad
justed. Generally while doing so, domains may have to be 
accounted for which border an already adjusted region. Then 
the constants for each of the phases at that particular border 
are already determined. But, evidently, the difference between 
them is zero, since they have been determined following a 
closed loop inside the composite body; and due to the pre
conditions, tractions vanish when integrated along a closed 
loop. 

It then follows that the potentials at every boundary common 
to two regions can be related in the manner of Eq. (17). Re
turning to the constants given in Eqs. (32), relating the two 
sets of complex potentials for the materials /' and j in contact 
with each other along a boundary, the relations among the six 
of them for a three-phase problem, given by Eqs. (33), (34), 
could be written as 

«23 

&23 

1 

«12-&12 

(«B -bn) 

(bn-b,2) 
(39) 

If, for a problem involving TV different phases the 7V-1 possible 
contact combinations between a material arbitrarily chosen as 
no. 1 and all other materials k, the 2N-2 constants a\k and blk 

are established, all other possibilities of contact between two 
phases / andy can be expressed with these constants by the use 
of Eq. (39) by just replacing 2 and 3 by / and j , respectively, 

1 

« i ; 

•bid 

•bid 
(40) 

Table 1 
terfaces 

r = 

o,= 

Pressures and radial coordinates at surfaces and in-

a< Vx7«, 
0 - 9 , 2 

vXiX2 a i 

- 9 2 3 

VXiX2X3«i 

- 9 3 1 

vXiX2X3A4<7, 

-9o 

Thus, all constants relating stress functions, in regions of 
different phases, to each other can be expressed with only 27V-
2 combinations of elastic constants. 

§ Illustrative Example 
A simple example is provided in the following. A circular 

disk with a concentrical hole, inner radius a, outer radius b, 
loaded axisymmetrically by internal pressure p, and external 
pressure q under conditions of plane stress is considered. The 
radial displacement ur is given by 

Mr) = -(oll,-vor) 

r (\ + v)(b/r)\p q) + (\-v){p-(b/afq) 

(b/ay-l 
(41) 

where E is Young's modulus. Four such rings of three different 
materials, fitting perfectly into each other when unloaded, are 
now put together. The materials are, from inside outwards, 
denoted as 1, 2, 3 and 1, respectively. In this way every phase 
is in contact with the two others. For the innermost ring the 
ratio of radii is given by (bi/al)

2 = \ l , the square of ratios of 
radii for the remaining rings being given in the same manner 
by X2, X3, and X4. Basic unknowns are the interface pressures 
<7i2> 923» and #3i, whereas loading is pressure q0 at the outer 
surface. The inner boundary of the four-ring aggregate is sup
posed to be unloaded (see also Table 1). 

Continuity of radial displacements and stresses at all inter
faces requires that 

(42) 

Cn Cn Cn 

C21 C22 ^ 2 3 

C31 C32 C33 

<7l2 

In 

#31 

= 

0 

0 

Q 

where 

C„ = 

C,2 = 

C,3 = 

Q> = 

Q 2 -

C23 : 

C32--

C33-

Q -

1 /Xi + l 

Ei \ X x - l 

1 2X2 

~E2 

X 2 + l 

X 2 - l 
+ v2 

1 E2 X2 

0, 

1 2 

£ 2 X 2 - 1 

Ei \X 2 

1 2X3 

£•3X3-1 ' 

1 2 

£ 3 x 3 - 1 ' 

_ J _ /X3 + 1 

£3 \X3-

1 2X4 

±1- \ __L (h±l 
-1 "7 E3\\3-l 

+ P3 

Ei X4-I 

1 

<7o-

"3 -

X4+I 

X4-I 
+ "1 
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It needs to be shown that the set of equations can be expressed 
in terms.of only four constants, e.g., al2, bl2 and a13, bn given 
by Eqs. (32). With the substitutions 

l + Vj_Ej _ 3 - K,-

1 + Vj Ej 1 + K/ 
(43) 

(where i,j=l, 2 or 3), the set of Eqs. (42) can be rewritten 
with the new elements 

Ch = - r2—r - r1—r (an - bl2) + 3bl2 + al2 - 1, 

Ai — 1 A2 — 1 

2 A 2 . ' 
Ci2 = r r ( « i 2 - O i 2 ) . 

\2— 1 
C,'3 = 0, 

C 2 ' i = r r ( f l i 2 - * i 2 ) . 
A2— 1 

X 2 + l X 3 + l 
C 2 ' 2 = - r 7 ( « i 2 - * i 2 > - ; r ( « i 3 - * i s ) 

X , - l 

2 A3 , 
C23 = ; 7 ( f l l 3 - * l 3 ) . 

x3-i 
- 3(fti2 -bn)-(an- a13), 

X 3 - l 

C3',=0, 

2 
C32 = T — r ( « i 3 - £ i 3 ) . 

A 3 - l 
_, X3 + 1 . , v «4 + 1 , N „ 7 , 

C 3 3 = - (An - 612) - 7 7 ( « n - bn) - 3&i3 - a 13 + 1, 
A3 — 1 A4 — 1 

It is seen that only four combinations of elastic parameters 
are sufficient to formulate the equations determining the in
terface pressures. It follows that the state of stress in the whole 
composite body depends on only four constants. 

6 Discussion 

The results presented in this paper concerning the minimum 
number of elastic constants required to describe the state of 
stress in a composite can be of use in a wide range of engineering 
problems. They can be summed up in the following state
ment: The state of stress in a composite body consisting of 
N different constituents, due to boundary tractions with re
sultant forces vanishing over each boundary, remains un
changed for any set of materials which preserves 2N-2 certain 
constants. 

The choice of these constants is obviously not unique; any 
combination which can be constructed with, e.g., the original 
set defined by Eq. (32) will do. The best choice may depend 
on the type of problem considered. 

The author believes that one particular application, where 
the results can be useful, is the modeling of contact problems 
involving anisotropic materials. The compression of a semi-
infinite strip against a half plane, as studied by Adams and 
Bogy (1976), could be modeled with the presented reduction 
of constitutive parameters if one (or both) of the elastic com
ponents were orthotropic. Another problem where the results 
are applicable is the order of singularity at a multiwedge corner 
(Theocaris, 1974). 

The results found in this study could intuitively be realized 
taking the Dundurs theorem (1967) as a starting point. If a 
material phase is in contact with only one other phase, the 
continuity conditions along the interface can be formulated 
using only two combinations of constitutive parameters. As
sume that a composite body consisting of N different phases 
is loaded by surface tractions. Generally, every phase could 

Fig. 6 Thin intermediate layer of material 1 between all domains of 
other phases / and / 

be in contact with every other phase and every domain could 
be in contact with several phases simultaneously. Now carry 
out the imaginary operation of inserting a thin layer of one 
material, arbitrarily labeled as no. 1, between the two dissimilar 
materials at every interface in the body. Then every material 
would be in contact with only phase 1, and due to Dundurs' 
theorem, the N-l contact combinations can be modeled sep
arately using, in all, only 2N-2 constants. If these intermediate 
layers are sufficiently thin, neither the stresses nor the dis
placements in the original material domains would differ no
tably. And, naturally, when the thickness approaches zero, 
one would regain the state of stress in the original problem. 

Expressed in terms of the equations given previously the 
relations between the complex potentials, determining the 
stresses in the adjacent phases /' andy are given by, c.f. Eqs. 
(17, 19, 32), 

1 - f f t f 1-6/ , 
(44) 

Suppose there exists an intermediate layer of material 1 (thick
ness A) between them (see Fig. 6). This layer borders to phase 
/ along the contour C, and to phase j at C,. In that layer 
the state of stress is given by the potentials 4n and 8i. These 
are related to the potentials in phases / and j as 

(45) 

at Q, and as 

* i u_ au bu 
\-au \-bu 

4>i 

A 

>r 
_ < M 

au bu 
\-aij l-bij 

\*j] 
UJ (46) 

at Cj. 
Letting the thickness A approach zero, the boundary con

tours C, and Cj would finally coincide, the relations above 
would be valid along the same contour C, = Cj and could be 
set equal. Eliminating 4>, and 0i in Eqs. (45), (46) and solving 
these for 0, and 0, yields relations for potentials between phases 
/ and j . 

0/ 1 

au-bi, 

(I-bu) -bu 

- ( 1 - a i / ) an l - « l y 

bu 
1-V 

(47) 

Insertion of expressions for the constants aih bu and a^, bxj 

gives the expected result, namely Eq. (44). As a matter of fact, 
the two matrix relations (45), (46) provide an alternative way 
for deducing the two relations (33), (34) (the two independent 
relations among the constants au, bu; aljt by and ay, bjj) by 
identification of matrix elements in Eq. (47). 
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This also suggests a method to eliminate two combinations 
of constitutive parameters already while formulating the prob
lem. Contact conditions between two phases are expressed 
through a chosen "dummy material," one of the material 
phases involved. 
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Three-Dimensional Slightly 
Nonplanar Cracks 
Three-dimensional slightly nonplanar cracks are studied via a perturbation method 
valid to the first-order accuracy in the deviation of the crack shape from a perfectly 
planar reference crack. The Bueckner-Rice crack-face weight functions are used in 
the perturbation analysis to establish a relationship, within first-order accuracy, 
between the apparent and local stress intensity factors for the nonplanar crack. 
Perturbation solutions for a cosine wavy crack with arbitrary wavelengths are used 
to examine the effects of three T-stress components, Txx, TXZJ TZZ) on the stability 
of a mode 1 planar crack in the x-z plane with front lying along the z-axis. A 
condition for the mode 1 crack to be stable against three-dimensional wavy per
turbations of wavelengths Xx and Xz is determined as T^ + Tzzg < 0 where g is negative, 
with a very small magnitude, for 0 < XX Az < l/yjl and positive for l/\[3 < Xx A z < co; 
this suggests that when T„ = 0, a compressive stress Tzz may cause crack deflection 
with large wavelengths parallel to the crack front and a tensile stress Tzz may cause 
deflection with small wavelengths parallel to the front. For comparable T-stress 
values, it is shown that a negative T„ always enhances the stability of a mode 1 
planar crack and a negative Tzz ensures the stability of a mode 1 crack against 
perturbations parallel to the crack front. The shear component TXZJ while not af
fecting the mode 1 path stability, induces a mode 3 stress intensity factor once crack 
deflection occurs, and thus promotes the formation of en echelon-type cracking 
patterns. 

Introduction 
In this paper we pose the following three-dimensional crack 

problem. That is, suppose a quasi-statically propagating crack 
in a homogeneous and isotropic linear elastic body; when the 
crack surfaces are assumed to be perfectly planar, the applied 
stress field can be characterized by some apparent stress in
tensity factors. However, due to loading asymmetry or material 
inhomogeneities, curved or branched crack extension may oc
cur so that the actual crack profile follows a slightly nonplanar 
surface. The question is how the crack surface morphology 
affects the local stress intensities near the crack tip, i.e., what 
is the relationship between the apparent and local stress in
tensity values for the slightly nonplanar crack? This problem 
will be examined via a perturbation approach in which the 
nonplanar crack is viewed as being perturbed from a perfectly 
planar reference crack occupying the projection region of the 
actual crack on a chosen reference plane. 

Under certain loading and geometry conditions, it is con
ceivable that portions of the crack surfaces may be forced into 
contact during nonplanar three-dimensional crack growth. 
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However, for simplicity, we shall only consider those cases in 
which sufficient crack opening ensures that no crack face con
tacts will occur. The perturbation algorithm we use, which is 
valid to the first-order accuracy in the deviation of the actual 
crack shape from a planar reference crack, can be carried out 
for any crack geometry as soon as one knows the stress intensity 
factory solutions due to arbitrary point forces acting on the 
surfaces of the reference crack. Such point force solutions 
correspond to the concept of crack-face weight functions 
(Bueckner, 1970, 1973; Rice, 1972) in elastic crack analysis. 
Previous applications of the three-dimensional weight function 
method include in-plane configurational perturbations of a 
planar crack (e.g., Rice, 1985a, 1989; Gao and Rice, 1987a,b), 
crack interaction with transformation strains and dislocations 
(e.g., Rice, 1985b; Gao, 1989a; Gao and Rice, 1989a), crack 
trapping by obstacles (e.g., Gao and Rice, 1989b), cracks in 
a weakly nonhomogeneous solid (Gao, 1991), etc. The weight 
function solutions have been analytically determined for in
ternal and external circular cracks (Bueckner, 1987; Gao, 
1989b), with semi-infinite half-plane cracks as a special case. 
Finite element schemes (e.g., Parks and Kamenetzky, 1979; 
Sham, 1987) also exist for determining the weight functions 
numerically for arbitrary two or three-dimensional geometries. 
The present paper may be viewed as a new application of the 
weight function technique to slightly nonplanar crack problems 
in three-dimensional regime. 

The two-dimensional problem of a slightly nonplanar crack 
has been studied by a different perturbation technique based 
on Muskhelishvilli's complex variable representations (e.g., 
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Banichuk, 1970; Goldstein and Salganik, 1970, 1974; Cotterell 
and Rice, 1980; Karihaloo et al., 1981). In those studies, the 
perturbation solutions, which satisfy the boundary conditions 
approximately along the crack surfaces, have been used to 
explain phenonmena such as curved or branched crack exten
sions during quasi-static crack propagation. Cotterell and Rice 
(1980) used stress intensity factor solutions of first-order ac
curacy to examine the stability of the fracture path of a quasi-
statically growing two-dimensional crack under mode I con
ditions; they found that the path stability is controlled by the 
nonsingular stress term T^, acting in parallel to the crack 
growth direction, in the Irwin-Williams expansion of the crack-
tip field, namely, the mode I path is stable if T^-KO and 
unstable if Txx> 0. This stability criterion has since been widely 
used in explaining or predicting two-dimensional crack growth 
under various loading and material conditions. Most recently, 
Gao and Chiu (1992) used complex variable representations in 
the two-dimensional anisotropic elasticity theory and presented 
a second-order perturbation analysis for slightly curved cracks 
in materials with arbitrary anisotropy. The solutions derived 
in (Gao and Chiu, 1992) have been used to examine the roles 
of anisotropy in curved or branched crack growth. Along the 
above line of progress, this paper extends the existing work 
by studying the three-dimensional effects of a nonplanar crack. 
In the three-dimensional case, there are three T-stress com
ponents acting in parallel to the crack, rather than only one 
component in the two-dimensional case, which may affect the 
growth of a nonplanar crack. 

The perturbation method we develop here applies to any 
crack geometries as long as the crack-face weight function 
solutions are known for the corresponding reference crack. 
For simplicity, we use a half-plane crack model to study the 
effects of nonplanar crack perturbations on a much smaller 
scale than global dimensions, such as a crack size. In such 
analysis, the reference crack is taken as a semi-infinite planar 
crack for which the crack-face weight function solutions are 
fully available in the literature. First-order perturbation for
mulae are given for the stress intensity factors along the front 
of a slightly nonplanar crack with arbitrary surface profile. 
The perturbation formulae provide an approximate relation
ship between the apparent and local stress intensity values for 
the perturbed crack. The three-dimensional perturbation so
lutions reduce to the corresponding two-dimensional solutions 
existing in the literature when the half-plane crack is perturbed 
only in the direction of the crack growth. We use the solution 
to a cosine wavy perturbation along an originally planar crack 
to examine the stability of a planar crack under pure mode 1 
loading against nonlinear perturbations. The mode 1 planar 
crack is said to be stable if the induced mode 2 stress intensity 
factor due to an imposed infinitesimal perturbation is positive 
at a wave peak along the crack front; this ensures that the 
subsequent crack growth will suppress the perturbation by 
branching toward the original planar position. The effects of 
the T-stress components on the mode 1 crack stability are 
studied in detail using the perturbation results. It is concluded 
that while T„ controls the stability of the crack against per
turbations parallel to the growth direction, the components 
Tzz, acting in parallel to the crack front, is mainly responsible 
for the crack stability against perturbations parallel to the crack 
front. The shear component Txz, while not affecting the mode 
1 stability, generates a mode 3 stress intensity factor once 
nonplanar crack perturbation occurs, and thus may contribute ' 
to the formation of en echelon cracking pattern (under mixed 
mode 1 and 3). 

Perturbation Approach to Slightly Nonplanar Cracks 
Consider a three-dimensional crack along a nonplanar curved 

surface c with c+ denoting the upper crack face and c~ the 
lower crack face. When c is only slightly different from its 

(b) 
Fig. 1 (a) A slightly nonplanar crack with surfaces c±; (b) the reference 
crack occupying region c, the planar projection of 6 

planar projection c on a chosen reference plane, say the x-z 
plane, one may devise a perturbation procedure to calculate 
solutions for the curved crack based on the solutions for a 
reference planar crack occupying the projection region c (Figs. 
1). Let the curved surface c be described by 

y=A(x,z) (1) 
where A (x,z) represents a small perturbation of the crack 
surface from its reference planar position on c (in the x-z plane) 
to the actual position on c. The solution to the curved crack 
can be written in the perturbation form 

aiJ=(T°J + ay (2) 

where a\ represents the solution for the reference crack and 
the "disturbance" term dy will be retained only to the first-
order accuracy in A (x,z) • As a crack face point along c+ or 
c~ is perturbed to the corresponding reference position along 
the reference crack, the stress field is perturbed as 

o(j(x,A,z) = o°i){x,0,z) +A (x,z)ol,y(x,0,z) 
+ aij(x,Q,z)+Q{A2) (3) 

where ( )j means differentiation with respect to the variable 
y-

Assuming that the crack is subject to traction t* on the 
upper crack surface and tj on the lower surface, the boundary 
condition may be written as 

(o„nj)* = t? one* (4) 
where the summation convention over repeated indices is im
plied and the outward normals n* have components 

n* = ±AtX(x,z), « / = =F 1, tiy = ±AtZ(x,z) (5) 
within first-order accuracy. Substituting Eqs. (3) and (5) into 
(4) and neglecting higher-order terms lead to 

(Oyy + Oyy + A ffyyj, ~ A ,qOyq ) = =F ty 

(Oyp + ayp + AOypj- A ^gp) ± = =F tp OU C^ (6) 
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where A stands for A (x,z) and the subscripts p,q range over 
x and z only. Letting the reference planar crack be subject to 
the same surface tractions as the actual nonplanar crack, the 
zeroth-order equations are obtained as 

{tP„)± = =Ff*, (<4)* = =F/* one*. (7) 

Now, collecting the remaining first-order terms in Eqs. (6) and 
using the equilibrium equations, ffw-j,.+ ff9/,g = 0, we obtain two 
first-order equations 

(**,)* = (/4«&)* = =F(i4f*),„ {aypr={Aa%)% one*. (8) 

Equations (8) mean that the first-order stress terms can be 
treated as being induced by some "effective" traction along 
the reference crack surfaces. Thus, the original nonplanar crack 
problem has been converted, within first-order accuracy, into 
one of a planar crack subject to the crack-face tractions 

{tf)± = t± + (At±)iq, ( / f ) ± = /*=FM<4,)* one*. (9) 

The weighted average of the crack face weight functions, cor
responding to the solutions for the stress intensity factors due 
to point forces, with the effective tractions in (9) then gives 
the solution to a slightly nonplanar crack. If the crack faces 
are free of traction, i.e., tj = 0, the effective forces in (9) reduce 
to 

(/f)± = 0, (tf)±=*(A<j°gp)± one*. (10) 

In this case, the effective traction contains only shear forces 
distributed along the reference crack surfaces. The type of 
tractions in Eqs. (9), (10) generally do not have the same 
magnitude on the upper and lower crack faces because the 
hoop stress components <Pqp may have different values on each 
crack face. 

A Semi-Infinite Planar Crack 

Apparent Versus Local Stress Intensity Factors. For sim
plicity, in this paper we only consider nonplanar crack per
turbations on a much smaller scale than global dimensions 
such as a crack size. To study those problems, we use a half-
plane crack model in which the reference crack is taken as a 
semi-infinite half-plane crack shown in Figs. 2. Before per
turbation, the half-plane crack (Fig. 2(a)) is subject to an 
applied "/f-field" with stress intensity factors K%, where 
a= 1,2,3 denotes the crack modes, so that the reference stress 
field is given by 

og=2-S=/S(9) + 7V. (11) 
£ i V27rr 

Here, r, d are the polar coordinates at the crack tip (Fig. 2(b)), 
Tjj represents the nonsingular T-stresses and the /j/(0) are the 
well-known angular functions for the crack-tip field (see, e.g., 
Kanninen and Popelar, 1985). There are three nonsingular T-
stress components, T^, Txz, and Ta, which play an important 
role in the three-dimensional nonplanar crack perturbation. 
Along the crack faces (*<0), the traction components a% van
ish and the tangential stresses are 

(<W - Txx
:¥—j==, (axz) =TxzT-j==, 

V - litx V - 2irx 

(4 ) " = 7 ^ " ^ = = . (12) 
\l-2wx 

A fundamental problem can be posed as follows. The applied 
stress intensities K%, which cause the singular stress field (11) 
when the crack is assumed to be perfectly planar, may be viewed 
as the "apparent" stress intensity factors for the cracked body. 
However, due to loading asymmetry or local material inhom-
ogeneities, curved or branched crack extension may occur so 
that the actual crack surfaces are not perfectly planar. Rather, 
they may exhibit some nonplanar surface morphology, and 
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(c) 
Fig. 2 (a) A half-plane crack in cartesian coordinates x, y, z, (b) the polar 
coordinates r, 0 at the crack tip; (c) the geometrical parameters d and A 

the' 'real" stress intensity factors J?£p at the crack tip will differ 
from their apparent values K%. The questions are how to de
termine A^p from K%, and how the three-dimensional crack 
surface morphology affects the crack growth which is governed 
by the local stress intensities Ajjp, rather than IQ. The per
turbation approach can be used to provide an approximate 
description and understanding on these issues. 

Three-Dimensional Crack-Face Weight Functions for a Half-
Plane Crack. Equations (7)-(10) indicate that the problem 
of a slightly nonplanar crack can be treated as a planar crack 
subject to prescribed crack-face tractions. The solutions to such 
problems may be obtained by linear superposition on the point 
force solutions for the stress intensity factors, corresponding 
to the crack-face weight functions. For the half-plane crack 
geometry, the crack-face weight function h^(z';x,z) (or h^j) 
is defined as the mode a stress intensity factor at an observation 
point z along the crack front due to a unit point force in j 
direction acting at the crack-face position x,0+,z (or x,0~,z). 
Knowledge of h^(z';x,z) allows one to construct the solution 
due to arbitrary crack-face tractions by linear superposition. 
For example, if the crack-face tractions are given as tf (x,z), 
the crack-tip stress intensity factors Jf^iz') are 
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[t;(x,z)h^(z';x,z) 
- 0 0 " - C O 

+ t]~ (x,z)h~j(z';x,z)]dxdz. (13) 

The weight functions h^(z';x,z) for half-plane cracks have 
been given in explicit forms by Bueckner (1987) as 

± (1-2J<) ,_3 / 2 3X . 
h& = 77 71= d c o s T> h*y = ± 

8(1 - p)y/ir 2 
3X 

8(1 -e)V^ 2 (14) 

^ r 2 ( l + - ^ - c o s 2 x V 
7T3 \ 2-C / ' 

4(2 - y)Vir 

2v 

1-3/2 3X 

d " cos — 

A£ = i T 1 1 - /r—r d 2sin2X z 2 - y -V 2TT3 

I + 2v \ —x ,_, . „ 
A3* = ±» A r - j d 2sin2X, 

2 - v "\ 2TT 

0 - 2 " ) .,-3/2 • 3X 
2(2 -»>)V^ 2 

where 

c?2=^2+(z-z')2 , X = tan~ 

(16) 

(17) 

are geometrical parameters shown in Fig. 2(c). The weight 
function solutions for internal and external circular cracks can 
be found in (Bueckner, 1987; Gao, 1989b), and numerical 
solutions can be calculated for two or three-dimensional weight 
functions associated with arbitrary crack geometries by finite 
element schemes (Parks and Kamenetzky, 1979; Sham, 1987). 

Perturbation Analysis of Slightly Nonplanar Cracks 

Apparent K% Versus Local K%p. The crack-face weight 
functions given in Eqs. (14)-(17) allow one to calculate the 
stress intensity factors due to arbitrary crack-face tractions. 
Since the problem of a slightly nonplanar crack can be treated 
as a planar crack with effective crack-face tractions given in 
Eqs. (9), one may use the weight function solutions to calculate 
the local stress intensity factors at the crack tip. 

A nonplanar crack perturbation may influence the local 
stress intensity factors in two ways. First, change in the crack 
surface profile, from a planar surface to a nonplanar one, may 
result in changes in the stress distribution ahead the crack tip. 
Second, the crack tip may locally change its orientation during 
the perturbation; since the stress intensity factors are defined 
as measuring the strength of the normal and shear stresses 
along the prolongation of the local tangent plane at the crack 
tip, a slight kink or branch in the crack-tip orientation may 
also cause a variation in the stress intensity factors. Within 
first-order accuracy, one may write 

Kt^ = K^ + Ks
a + K'a (18) 

where K^ represents the effect of the crack surface morphology 
and K'a represents the effect of the crack-tip orientation. In 
writing Eq. (18) we have neglected higher-order terms such as 
the coupling between K^ and K'a. 

Since the coupling effects between A^ and K1^ are of higher 
order, in calculating A^, one may ignore changes in the crack-
tip orientation and, similarly, in calculating K'a, one may ignore 
changes in the crack surface morphology. To obtain A^ for 
the half-plane crack geometry, temporarily assume that the 
crack front remains perfectly straight such that the crack tip 
has the same orientation as the reference crack tip, i.e., 

A(0,z)=A,x(0,z) = 0. (19) 
In this case, K'a vanishes and the crack-tip stress intensity 
factors are defined such that ahead of the crack tip at x>0, 

in „ „ 1 (*?+*!• *T+*1 . * ? + * ! ] , _ 
I °yx, nyy, "yz J = 7== • (20) 

For a half-plane crack subject to apparent stress intensity fac
tors K%, the crack faces are assumed to be free of traction. 
Substituting the tangential stress components in Eqs. (12) into 
the effective force expressions in (10) and then using Eq. (13), 
one fluids that the mode 1 result can be written as 

Ks
l(z')=K?B2(z')+KT B,(z') (21) 

(15) where 

B2(z')=-4\ \ 

A(x,z)htx,x(z'';x>z) - vAiZ(x,z)htz(z'';x,z) 
V - 2 TTX 

{oo « 0 

- o o " - o o 

^A,z(x,z)hix(z' ;x,z) - A(x,z)htz,Az' ;x,z) 

dxdz 

. dxdz. (22) 
V-2xx 

Similarly, the shear mode results are 
K{(z') = T^C^iz') + T^C^iz') + TBCIBU' ) 
*1 (z') = T^C^iz') + TxzC3xz(z') + 7-«Cte(z') (23) 

where 

S oo „ 0 

- o o J - o o 

{OO n O 

iA^xtfhUz'vcz) 
-oo J ~ c o 

+AiX(x,z)h2z(z' ;x,z)]dxdz 

C2a{z')=-2\ \ AiZ(x,z)hUz';x,z)dxdz (24) 

and 
C t a U ' ) = - 2 A,x(x,z)hlx(z'\x,z)dxdz 

J _ o o J - o o 

J OO p O 

[A,z(x,z)htx(z';x,z) 
- O O " - O O 

+ Ajix^hfzlz1;x,z)]dxdz 

SOO nO 

A^x,z)hUz'\x,z)dxdz (25) 
-oo «J-oo 

represents the effects of the ^-stresses on the nonplanar crack 
perturbation. In deriving the mode I equations in (22), we 
have made an integration by parts for terms involving 
{A/sJ - 2wx)>x, which appear in the original expressions of the 
effective tractions. This manipulation is crucial for the integrals 
in (22) to remain convergent for an arbitrary crack profile 
A(x,z), even when the condition (19) is violated. Thus, the 
part of the stress intensity variation, A\, due to crack surface 
morphology change is completely determined from Eqs. (21)-
(25) as soon as the crack profile function A (x,z) is given. 
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Fig. 3 A wavy nonplanar crack; local crack-tip coordinates £, ij, f and 
global coordinates x, y, z 

In general cases, the quantities AJ + A^ still measure the 
first-order variation in strength of the stress components ayj 
near the crack tip in ^ = 0 plane, as in Eq. (20), but they do 
not correspond to the true stress intensity factors because the 
crack tip may have been slightly tilted due to the local out-of-
plane perturbations along the crack front. By definition, A^p 

should measure the strength of the normal and shear stresses 
along the prolongation of the local tangent plane at the crack 
tip, i.e., in the local coordinates £, IJ, f (Fig. 3), 

, (iff, *fp, ^ ip) (26) 
V> °vv °vt> 

Geometrical relations can be used to calculate the true stress 
intensity factors A"p from the crack-tip orientation angles and 
the values of A™ and Ks

a. For the half-plane crack geometry, 
the unit vectors in £, rj, f directions at an observation point 
z along the crack front can be expressed to first order as 

e t = {1,«,0), e ,= { - « , l , - 7 ) , e f= {0,7,1} (27) 

where the angles u = Ax(0,z') and y=A:Z(0,z') give the ori
entation of the crack tip relative to the cartesian coordinates 
x, y, z. Equations (27) indicate that the crack-tip coordinates 
£, r), f are related to x, y, z by two consecutive rotations, one 
about the z axis by u and then another about the x axis by y. 
The stress field in the local tangent plane -q = 0 can be obtained 
from the stresses ayi in the y = 0 plane by utilizing the well-
known crack-tip field in Eq. (11). Then the components of 
stresses in the local £, r\, f directions are calculated by a co
ordinate transformation. When this is done, using Eq. (26) 
and ignoring higher-order terms lead to 

Kf = A ? - (3o>/2)K? - 2yKf + K\ 

(28) Kf = A-" + (1 - 2v)yKf + Af 

where one may identify 

Aj = - (3o)/2)A? - 27Af, K'2 = (co/2)Af, 

K\ = (\-2v)yK™ (29) 

as the variations in the stress intensity factors due to change 
in the crack-tip orientation. Equations (28) and (21)-(25) pro
vide an approximate relationship between the apparent stress 
intensity factors AJ and the local crack-tip values A^p. With , 
proper modifications, these perturbation formulae can be ap
plied to other crack geometries such as internal or external 
circular cracks. 

It is worth pointing out that the three-dimensional crack 
perturbation formulae derived above are consistent with the 
corresponding two-dimensional perturbation formulae in the 
literature (e.g., Cotterell and Rice, 1980). In the two-dimen
sional case, the crack profile is independent of the variable z 

such that A (x,z) = A (x). Carrying out the integrations in (21)-
(25) with respect to z and inserting the results into Eq. (28) 
lead to 

A ^ A r - y A T 

A ^ A T + ^ A T - far A' (x)dx 

"VirJ-oo -J-x 
(30) 

Cotterell and Rice (1980) used the equations for in-plane crack 
modes 1 and 2 to show that a pure mode I crack path is stable 
if 7 '„<0 and unstable if Txx>0. 

The perturbation analysis and formulae given in Eqs. (21)-
(28) indicate that, within first-order accuracy, the /"-stresses 
do not affect the mode 1 stress intensity factors. However, the 
shear mode intensity factors are influenced by all three /-stress 
components, T^, Txz, and Tzz. By controlling the local shear 
stress intensities associated with a nonplanar perturbation, the 
/-stresses play an important role in determining the stability 
of a mode 1 planar crack during growth. We shall examine 
this issue in detail shortly. 

Cosine Wave Crack Perturbat ions Versus the Stability 
of a Mode 1 Planar Crack During Quasi-static Growth 

The Effect of Mode Mixity. Consider a cosine wave crack 
profile 

A(x,z)=A0coskx(x-x0)coskzz (31) 

whereto is the wave amplitude and kx, kz are "wave numbers" 
which may be related to perturbation wavelengths \x, \z (in 
the x and z directions) as 

kx = 2ir/\x, kz = 2ir/\z. (32) 

Since the crack occupies the region x<0, the parameter XQ is 
chosen to locate the relative position of the crack front along 
the wavy surface. The aspect ratios A^kx = 2irAa/\x and 
A0kz = 2irA0/\z characterize the "roughness" of the crack sur
faces in the x (crack growth) and z (crack front) directions. 
Substituting (31) into (22) and using the integral formulae in 
the Appendix yield 

, \ — 2v I • / 4>k '"A i 
B2(z ) = j=r-A0kz^/sm(l>kcos[kxxo- — + -jcoskzz 

Bi{z') = 
V2(l -v) \ 

y + - l s m ^ z 

(33) 

where 4>k = tan~ lkz/kx = t a n " l \ x / \ z . Using Eqs. (29) to cal
culate the A-variation due to crack-tip orientation change, the 
final result for A"p for the cosine wavy crack is 

l—2v , i—.—— / , <t>k ir\ 
—=- kzsl smfacos I kxx0 - — + - I 

l - 2 x 

K?=KT-K2
x,A0coskzz' 

3kxsinkxx0 - K^Aok^ink^' Vsin^)t 

j , 4>k T 

x c o s ( £ x x 0 - y + -

V 2 ( l - v ) 

2cos^Ar0 (34) 

Observe that the effect of A™ on A'1
lp(z') varies in phase with 

the crack-front profile, while the effect of A " suffers a 90-
deg phase lag. With a given mode mixity, the out-of-plane 
crack perturbation can increase or decrease the mode I stress 
intensity factor. 
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To further examine the effects of mode mixity, temporarily 
ignore the T-stress effects in the shear mode stress intensity 
factors. First, consider two-dimensional perturbations, in which 
case A (x,z) = A (x) and 

jft1
iP = J f f - y J f ? , K%P = K? + ̂ K?, ^p=Kf. (35) 

This suggests that K1^ is increased while K£ is decreased with 
a negative a> (downward branching). If the crack tends to grow 
with local mode 1 condition, a kink will occur at an initial 
angle (Cotterell and Rice, 1980) 

o>=-2K?/K?. (36) 

This analysis of local crack branching has important impli
cations. Suppose a planar crack growing quasi-statically under 
pure mode 1 loading. The crack will tend to remain in the 
planar configuration, or stable against out-of-plane pertur
bations, if the mode 2 stress intensity factor induced by a small 
perturbation causes the crack to branch back toward the planar 
position. Oppositely, if the subsequent branching tends to de
flect the crack further away from the original planar position, 
an infinitesimal perturbation would be enlarged into a mac
roscopic instability. This principle will be used shortly to study 
the stability of a mode 1 planar crack. 

In the special case when the wavy perturbation is parallel to 
the crack front, A (x,z) =A (z) and 

I$p=KT-l—zr K?A0kzcoskzz' 
V2 

+ K"A0kzsmkzz' 
\-2v 

'V2(l-*) 
+ 2 (37) 

The above response to cosine wave crack-front perturbations 
can be used to construct solutions for an arbitrary crack-front 
profile A (z) via standard Fourier cosine transform. Applying 
this procedure to Eq. (37) and combining the results with the 
shear mode solutions, one obtains 

Kt?p(z')=K?-K?y 
\-2v 

V 2 ( l - c ) 
+ 2 

+ ^K?PV\ 
TTV2 

A(z)-A(z') 

» U - z ' ) 2 dz 

Kp(z')=Kf 

Kf{z')=K? + (\-2v)yK? (38) 

for arbitrary A (z) which deviates slightly from constancy. 
Here, y = dA(z'' )/dz' and "PV" means principal value in the 
Cauchy sense. Thus, assuming \Kf\«K?, a local mode 1 
crack growth requires a slope, 

y=-K?/(l-2v)KT (39) 

along the crack front. In practice, this is observed in the form 
of en echelon crack segmentation patterns in growth of a crack 
under mixed-mode 1 and 3 loading conditions (e.g., Palanis-
wamy and Knauss, 1978). Segmented mixed-mode cracking 
patterns are also observed in brittle fracture of rock in the 
Earth's crust (e.g., see the review article by Pollard and Aydin, 
1988). It will be shown shortly that a positive ^-stress parallel 
to the crack front (i.e., Tzz>0) helps to destabilize a mode 1 
planar crack via nonplanar crack perturbations parallel to the 
crack front. 

The Effects of J-Stress on the Stability of a Mode 1 Planar 
Crack During Quasi-static Growth. The 7"-stresses change the 
shear mode stress intensity factors at the tip of a slightly non-
planar crack according to Eqs. (23)-(25). For the cosine wavy 
cracks, substituting (31) into (24), (25) and using the integral 
results provided in the Appendix, it can be shown that 

Clxx= - / - A^kxcoskzz' 
. (f>f( IT 

sin[kxx0- — + -

2-v 
sin^sin in^-^-jj 

C2xZ= \-AQkzsmkzz' i i <l>k , ir 

2-v 
v . 1, 5$* ir 

+ —— sin I kxx0—— 

" 2 „ , • 
= 2 ^ W ~k olCzSm(t'kCOS (. Hk r\ 

2 4 

coskzz' (40) 

for mode 2 and 

'-JZ^sj'k Aokzco^>kSin (kxXo-
3<f>k 

2 - J )** , -
Qxj - • A0coskzz' 

<j>k IT 

kxsin[kxXo- — + -

2-v 
+:: kzsm [ kxx0 

C\Z7 — A0kz 
i , 4>k IT 

cos[kxx0- — + -

v . I 3<f>t if 
+ ~2Z~v s m < ^ c o s I kxX° — 2 — 4 sinkzz' (41) 

for mode 3. For all cases, the effects of T-stresses increase 
with Aff\fk ~ A0/\f\, a parameter similar to the surface rough
ness. 

The above cosine wave crack solutions can be used to study 
the stability of a mode 1 planar crack during growth. To see 
this, first consider the special case of a two-dimensional wavy 
crack. Setting kz = 0 and 4>k = 0, then using Eqs. (23), (28), (40), 
and (41), one finds that 

Kf = K? + KTAok^ink^o/2 - T^-^k^Aosinik^o + TT/4) 

Kf = Kf - T^V2^ylosin(Mo + T / 4 ) . (42) 

Under pure mode 1 loading, i.e., K2=Kf = 0, it is possible 
to have a perfectly planar crack growth. To test the stability 
of a mode 1 planar crack against nonplanar perturbations, let 
the crack surface be subject to an infinitesimal wavy disturb
ance (or, equivalently, assume that an infinitesimal fluctuation 
in crack surface morphology is inevitable due to imperfec
tions). The mode 1 paths is said to be stable if during subse
quent growth the crack tends to propagate back toward the 
original planar position, and unstable if the subsequent growth 
tends to deflect the crack further away from the planar path. 
The kinking tendency in Eq. (36) at a nonzero K2 suggests that 
the stability can be interpreted as requiring that Kf have a 
positive value at a wave peak such as the location x0 = 0 (so 
that in subsequent crack growth w < 0). When A"™ = Kf = 0 and 
x0 = 0, Eqs. (42) reduce to 

Kt^-T^Ao, Kf=-Txz^Jk~xA0. (43) 

Applying the wave-peak stability condition ^2 i p>0 immedi
ately leads to the conclusion of Cotterell and Rice (1980) that 
a pure mode 1 fracture path is stable if 7 ^ < 0 and unstable 
if Txx>0. The shear stress Txz causes a mode III stress intensity 
and may contribute to the subsequent formation of en echelon 
cracking patterns once the out-of-plane crack perturbations 
occur. 

The above wavy crack approach to the mode 1 path stability 
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Fig. 4 A cosine wave nonplanar crack undulating parallel to the crack 
front 

8(V 
I 

30 60 90 

<t>k (degree) 

Fig. 5 Function 9(4*) in the stability condition in Eq. (50) 

is different from that of Cotterell and Rice (1980). Cotterell 
and Rice considered a small initial crack branching due to local 
imperfections and showed that the crack will grow back toward 
the original mode 1 path if Txx< 0 and will deflect further away 
from the original path if Txx>0. The analysis of Cotterell and 
Rice involves the solution to an integral equation, which can 
not be easily extended to the three-dimensional regime. Our 
approach, while leading to the same conclusion as that of 
Cotterell and Rice in the two-dimensional cases, requires only 
the perturbation solution to a cosine wavy crack and may be 
directly extended to the three-dimensional analysis using the 
general cosine wavy crack solutions given in Eqs. (40), (41). 

To understand the stability issue in three dimension, let us 
first examine the stability of a mode 1 planar crack against 
nonplanar perturbations parallel to the crack front. Figure 4 
shows a nonplanar crack with crack face undulating parallel 
to the crack front. For such a crack configuration, substituting 
A(x,z)=A(z), kx = 0 and <t>k = ir/2 into (40), (41) gives the 
formulae 

A2P = A? + : 2kzsinkzz' • T„A0-\/2kzcoskzz' 

K*jp = K?-(l-2v)KTA0kzsmkzz' - - — TxzA0^/2kzcoskzz' 
2 — v 

2(1-v) 
2 - i 

to calculate the shear stress intensity factors for a wavy crack 
undulating in the z direction under arbitrary mode mixity and 

TzzA0y/2kzsinkzz' (44) 

T-stesses. When K% = K% = 0, the shear stress intensities at a 
wave peak position (e.g., z =0) are 

2-v 
TzzAj2kz, K$>=--^-T„A<rJ2kz. (45) 

2 - e 
Again, a positive K%p signals stability of a planar crack against 
the wavy perturbation because, when a small disturbance oc
curs, subsequent crack growth tends to suppress the pertur
bation if A^2P> 0 at a wave peak. Therefore, a mode 1 planar 
crack is stable against nonplanar perturbations parallel to the 
crack front i f T K < 0 and unstable if Ta>0. In latter case, the 
instability may eventually lead to the formation of en echelon 
segmentation along the crack front. However, the lack of a 
solution for the entire nonplanar three-dimensional crack 
growth path renders any further discussions merely speculative. 

In a complete three-dimensional stability analysis, one should 
consider general wavy perturbations with arbitrary wavenum-
bers kx and kz. Analogous to the discussions leading to Eqs. 
(43), (45), it is sufficiently insightful to examine the T-stress 
effects at a wave peak (e.g., x0 = z' =0) where 

n<t>k\v . /3<fo 7r 
s i n | - - y + — sinfcsm I — + -Cixx— ~ .1. Aokx 

cta=o 

Clzz = 2^~uJk A^sin^cos \Y + \ 

and 

C-\xz = 

(46) 

A, 
, • I I? 0 / t \ V . [5(j)k 7T 
Ar̂ sml —--— I kzsm[ —— + 

»4 2 2-v l ° 
(47) C3zz = 0. 

The stress intensity factors K^ and K^p at the peak position 
are given in terms of these coefficients by Eqs. (23). It is helpful 
to express jfv2P as 

xSt, = C2AT„+Tag(<l>lc)] (48) 

where 

* ( * * )= - ; 

sin2#*cos(3<fo/2 + 7r/4) 

cos<)!)t[sin(7r/4 - <j>k/2) + i>sin<fosin(3<fo/2 + TT/4)/(2 - v)] 

(49) 

The phase angle 4>k = tan~lkz/kx = tan~l\x/\z varies between 
0 and 90 deg so that C2» is always negative. Thus, the condition 
for a mode 1 planar crack to be stable against a wavy pertur
bation with kx and kz is (A*2

lp(peak) > 0) 

T„+T„g(<l>k)<0. (50) 

The function g(<t>k) is negative for 0 < <j>k < 30 deg (0 < Xx/Xz < 1 / 
VI) and positive for 30 deg<(/>Ar<90 deg (l/V3<Xx/X2<<x). 
Figure 5 plots the variation of g(<j>k) when the Poisson ratio v 
is taken as 0.25. It is seen that g(<j>k) is very small for a wide 
range of <f>k. For example, g(<$>k)<0.\ for 0<<j>k<40 deg. In 
this range, for comparable values of T^ and Tzz, the stability 
condition (50) is practically dominated by T^. However, when 
7 ^ = 0, a large compressive stress Tzz may cause crack deflec
tion with a large wavelength parallel to the crack front. When 
the perturbation wavelength in the z direction becomes suf
ficiently short, the stability becomes dominated by Tzz. In the 
extreme case when A (x,z) =A(z), the stability is completely 
controlled by 7^. 

Therefore, the tension stress Tzz acting in parallel to the 
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crack front has the following peculiar effects. If the crack 
surface morphology is lacking of short wavelength fluctuations 
parallel to the front, a positive Tzz enhances the stability of a 
mode 1 planar crack. Once the wavelength ratio \x/\z exceeds 
l/\/J = 0.577, the role of Ta on the mode 1 crack stability is 
reversed, i.e., a positive Ta cause the crack to deflect away 
from the planar position and a negative Tzz suppresses the 
deflection. Once the instability occurs, a mode 3 stress intensity 
factor, either pre-existing or generated by a nonzero Txz, may 
lead to the formation of en echelon cracks. 

Summary 
We have developed a perturbation approach to three-di

mensional slightly nonplanar cracks based on the concept of 
Bueckner-Rice crack-face weight functions. A slightly non-
planar crack is treated as being perturbed from a perfectly 
planar reference crack. Using a half-plane crack model, per
turbation formulae are derived for determining the local stress 
intensity factors along the front of a nonplanar crack with 
perturbation wavelengths much smaller than the global di
mensions such as a crack size. Using the weight function so
lutions available in the literature, it is possible to extend the 
perturbation analysis to internal or external circular cracks in 
an infinite solid. 

The present work is also motivated by a previous study of 
Cotterell and Rice (1980) on the stability of a two-dimensional 
crack under pure mode 1 loading. In the two-dimensional case, 
Cotterell and Rice has shown that the mode 1 fracture path is 
stable if the nonsingular T-stress parallel to the crack growth, 
Txx, is negative and unstable if T^ is positive. This criterion 
has since been widely used in understanding the crack growth 
pattern in brittle solids. However, a complete stability analysis 
should also include the perturbations parallel to the crack 
front. One example is the en echelon crack pattern frequently 
occurring in both engineering and geological observations. To 
facilitate the three-dimensional analysis, we have approached 
the mode 1 stability issue from a slightly different perspective, 
namely, a mode 1 planar crack is said to be stable against 
nonplanar perturbations if the mode 2 stress intensity factor 
induced by an infinitesimal wave perturbation has a positive 
value at the wave peaks; this ensures that during subsequent 
growth the crack will branch back toward the planar position. 
Solutions have been given for cosine wavy cracks with arbitrary 
wavelengths in directions normal and parallel to the crack 
front. The cosine wavy crack solutions are used to examine 
the effects of three 7"-stress components, 7^, Txz, Tzz, on the 
stability of a mode 1 planar crack. It is concluded that (i) a 
negative T^ always enhances the stability of a mode 1 planar 
crack against perturbations parallel the crack growth direction; 
(ii) a negative Tzz enhances the stability of a mode 1 crack 
against perturbations parallel to the crack front, such as the 
formation of en echelon crack patterns; (iii) a nonzero Txz 
generates a mode 3 stress intensity factor along the front of a 
slightly nonplanar crack and thus may contributes to the for
mation of en echelon cracks. A complete stability condition 
for the mode 1 planar crack against general three-dimensional 
wavy perturbations of wavelengths \x and A,, is given in Eq. 
(50) as Txx+Tzzg<0 where g is negative, with a very small 
magnitude, for 0<XX/XZ<1/VI and positive for 1/VJ <\x/ 
Xz<oo; this suggests that when T^-0, a compressive stress 
Tzz may cause crack deflection with a large perturbation wave
length parallel to the crack front and a tensile stress T"K may 
cause deflection with a small wavelength parallel to the front. 
When the T-stresses are of comparable values, g is very small 
for small \x/\z and very large for large \x/\z so that T^ controls 
the perturbation in the x direction and Ta controls the per
turbation in the z direction. The lack of a solution for the 
entire nonplanar three-dimensional crack growth path makes 

any further discussions merely speculative. Further investi
gation is left to the future work. 
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A P P E N D I X 
c?"2cos2Xsin/:^cfe = irkze

k*xsmkzz' (A8) 
- 0 0 

Some Integral Results 
For the convenience of the reader, here we present some of I d~2sin2Kcoskzzdz = irkze

kzxsmkzz' (A9) 
the integral formulae used in the text to derive perturbation 
solutions for cosine wave nonplanar cracks. For *<0 , solutions ror cosine wave nonpianar cracKS. ror *<u, p°° 

[—, — _, , / ,"""", \ d~hin2\sinkzzdz = -irkze ^coskzz' (A10) 
d=yx^+ (z-z ) , X = tan [(z-z )/x], k = yki + kj and •]_» 0,t = tan kz/kx, it may be verified that co f 1 

I ekfcoskx(x-Xo)dx 

{°° ^X J-ny—x 

d~ 3/2cos -t- coskzzdz = 2\/lrk~ze
k^coskzz' (A 1) 

-oo 2 
| c o s ( t a > - | + j ) (All) 

rf'3/2cos — sin^cfe = 2Vr^e*^sinA:zz' (A2) „o , 
I - = = e^sin&^x-XoW* 

d~ 3/2sin —- coskzzdz = 2\/lrkze
k^smkzz' (A3) 

J °° J\ \ "• 

«T3/2sin —- sinkzzdz= -2\fwk~ze
k^coskzz' (A4) ~o 

-°° 1 \J~^x ekz'coskx(x-xo)dx 
\ d 2coskzzdz= — e^cos^z' (A5) J^ ( 3<t>k w\ 
J_ . x = - ^ 5 cos I kxXo—j—j) 

j J-2sinkzzdz= -^ek^smkzz' (A6) f° ^ z ^ e
k^smkx(x-x0)dx 

d~2cos2\coskzzdz=Trkze
kzxcoskzz' (A7) = 2 F ^ s i n ( * * * 0 _ ~ ^ - 4 / ^A14') 

= -Jlrin(M,-S + J J (A12) 

(A13) 
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A New Boundary Integral Equation 
Formulation for Linear Elastic 
Solids 
A new boundary integral equation formulation is presented for two-dimensional 
linear elasticity problems for isotropic as well as anisotropic solids. The formulation 
is based on distributions of line forces and dislocations over a simply connected or 
multiply connected closed contour in an infinite body. Two types of boundary 
integral equations are derived. Both types of equations contain boundary tangential 
displacement gradients and tractions as unknowns. A general expression for the 
tangential stresses along the boundary in terms of the boundary tangential displace
ment gradients and tractions is given. The formulation is applied to obtain analytic 
solutions for half-plane problems. The formulation is also applied numerically to 
a test problem to demonstrate the accuracy of the formulation. 

1 Introduction 
The conventional boundary element method first developed 

by Rizzo (1967) for two-dimensional linear elasticity problems 
is based on Betti's reciprocal work theorem in conjunction 
with the fundamental solution of a body force. The primary 
unknowns used in the conventional boundary element method 
are the displacements and tractions. The stress field is com
puted from strain field using Hooke's law. As the strain field 
is computed by numerically differentiating the displacement 
field, this procedure leads to hypersingular integrals at bound
ary points so that special treatment is required to accurately 
calculate boundary strains and hence stresses. Ghosh at al. 
(1986) proposed an alternative boundary element formulation 
for isotropic bodies by partly integrating the integral associated 
with the boundary displacement in the conventional boundary 
element method. The resulting formulation is of lower order 
singularity and has tangential displacement gradients along the 
boundary as unknowns. The tangential displacement gradients 
and tractions together with Hooke's law can then be used to 
compute the tangential stresses. In this formulation the kernel 
associated with the tangential displacement gradients is mul
tiple valued and proper branch cut must be introduced. Because 
of the presence of the multiple-valued kernel, for multiply 
connected regions, the formulation involves the displacements 
in addition to the tangential displacement gradients and trac
tions at the boundary. In that case, additional constraint be-
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tween the displacements and the tangential displacement 
gradients must be imposed. Similar formulation for potential 
problems has been given by Choi and Kwak (1989). Another 
formulation was proposed by Okada et al. (1988). In their 
formulation, boundary integral equations are expressed in terms 
of the displacement gradients and the tractions and the kernels 
are single valued. As in Ghosh et al. (1986), the tangential 
stresses at the boundary can be computed directly from the 
displacement gradients through Hooke's law. In Okada et al. 
(1988), however, the unknowns are twice as many as those in 
the convention boundary element method for two-dimensional 
problems. 

In this paper, a new formulation is presented that contains 
displacement tangential gradients as unknowns for two-di
mensional linear elastic solids. Both isotropic and anisotropic 
materials are considered. The derivation of the formulation is 
based on the concept suggested by Altiero and Gavazza (1980) 
that the mechanical state in a loaded finite body can also be 
regarded as the state in a finite region of the same shape in 
an infinite body with suitable dislocations and body forces 
distributed over the boundary of the region. It will be shown 
that the densities of such dislocations and body forces are the 
negative of the tangential displacement gradients and the nor
mal tractions, respectively, at the boundary of the finite body. 
With the solutions for a dislocation and body force in an 
infinite body, one can immediately obtain integral represen
tations for the displacement gradients and tractions along an 
arbitrary contour in a finite body in terms of tangential dis
placements gradients and tractions at the boundary. The lim
iting representations for the displacement gradients and 
tractions at the points approaching the boundary then provide 
two types of boundary integral equations. In the present for
mulation, the number of unknowns is the same as that in the 
conventional boundary element method. The formulation is 
presented in complex-variable form using either Stroh for
malism (1958) for anistropic elasticity or Muskhelishivilli 
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method (1963) for isotropic elasticity. An advantage of using 
the complex-variable form is that in numerical implementation 
the boundary integrals can be analytically integrated more 
easily along each boundary element. Similar formulation for 
anisotropic composite bodies with interface cracks under an-
tiplane shear deformation has been given by Wu and Chiu 
(1991). 

2 Fundamental Solution 
Consider a line force F and dislocation of Burgers vector b 

with the line direction parallel to the x3-axis and intersecting 
the plane x3 = 0 at Xi = £1( x2 = £2 in an infinite body. The 
solution due to the line force and dislocation in an anisotropic 
medium in terms of the displacement and stress function is 
given by (Stroh, 1958) 

u(z) = U(2,f)F + Wtef)b, (1) 

*(z) = Wfcr)7'F + V(z,r)b> (2) 

where z = X\ + ix2, i = V - l . is used to denote the field 
point and f = £1 + z'£2 the source point 

U(z,f) = $R[AGfer)A7']) (3) 
Wfcf) = 5H[AG(z,f)B7'], (4) 

V(z,0 = mBG(z,WT], (5) 
and SR stands for the real part. Note that both U and V are 
symmetric. The stress function $ is defined such that 

a * 

with t as the traction on a contour s. In (3), (4), and (5), A 
= [a], a2, a3] with ak as the eigenvectors corresponding to the 
three eigenvalue pk with positive imaginary part of the follow
ing equation (Stroh, 1958): 

[Q + (R + R r ) ^ + TJp|]a, = 0, (7) 

where 

Qik=Cj\k\, 

Rik=Qlk2> 

Tik=Cmc2> 
and C is the elasticity tensor. The matrix B is related to A by 

B = R7A + TAP, (8) 

where P = diag [p t, p2, p{[. The matrix function G(z, f) is 
given by 

t = (6) 

G(z,fl = -.diag[log(zr 
TTl 

•f l ) , l0gte-f2) , lOgfe-f3)] , (9) 

where Zk = X\ + p/cx2 and & = £1 + Pkii- The matrices A 
and B are normalized to have the following properties: (Ting, 
1986) 

AA' = H, (10) 

u(z) = aw(z,n 
da 

hda, (13) 

where da = -\J d%\ + d&. From (6) and. (2), the tractions at 
f on a contour s due to a body force at z is given by 

t ( f )= -
dWTtf,z) 

da 
(14) 

Equations (3), (4), and (5) are not applicable to isotropic 
media under plane-strain condition in which case the eigenvalue 
p = i is a repeated root of (7). For isotropic materials, 
Muskhelishivilli method (1963) can be used to derive those 
matrices. The resulting expressions are 

U ( z , f ) = -

Wfe,fl = 

1 

2TT/X(K + 1) 

1 

9? (dog(z-f)I-
Xi-

2TT(/C+1) 
9? -logfe-0 

KK+1) 1 

-n 
1 / 

, (15) 

K - l KK+1) 

V(z ,»=-
2» 

7r(/c + 1) 
9? 

+ 2 

log(z-0I-

x2~ 
z-

x2-

-£2 

-f 

-£2 

• f 

r - 1 

- i \ 
1 / 

(16) 

(17) 

where /t is the shear modulus, K = 3 - Av with i> as Poisson's 
ratio. Note that the matrices U and V for isotropic materials 
are also symmetric. 

3 Formulation 
Consider now a multiply connected region D+ in an infinite 

space. The region D+ is bounded internally by a set of contours 
Cu C2 C„ and externally by C0 as shown in Fig. 1 for 
the case « = 2. The region exterior to D+ and the bounding 
contours is denoted by D~. The unit normal vector pointing 
from D+ to D~~ is denoted by n and the tangential unit vector 
m is defined by rotating n 90 degrees counterclockwise as shown 
in Fig. 1. For a finite body with boundary coinciding with C 
= U/!=o Ck, the conventional boundary element method is 
obtained by applying the Betti's reciprocal work theorem with 
the fundamental solution given by (1) with b = 0 and (14) of 
a body force at the point z. The resulting equation is given by 

0ufe) = \ (u(f,z)t„i (D+ dm (t,zMft)d<j, (18) 

where t„ is the normal traction on the boundary, -— denotes 
dm 

tangential derivative, /3 = 1 in D+, and /3 = 1/2 at smooth 
boundary point. Since 

u(r,«)=u(z,n, 
w(r,z)=w(z,n±^i, 

(19) 

(20) 

BB' 

AB r =-( I - /S) , 

(11) 

(12) 

where H, L, and S are real matrices and I is the unity matrix. 
For future reference, the displacement field due to a dis

location dipole and the traction field due to a body force are 
given here. From (1), the displacement field due to a dislocation 
dipole created by placing a dislocation of Burgers b at (£1, £2) 
and the other dislocation - b at (£1 + rf£i, £2 + ^£2) is given 
by 

Fig. 1 A multiply connected region with external boundary C0 and in
ternal boundary Ch I - 1 n 
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(18) can also be written as 

0ufr) = \ (v(z,nt„({) + ^ fc,0u(B j da. (21) 

Comparison of (21) with (1) and (13) reveals that displacement 
field in the finite body can also be regarded as that in D+ due 
to the dislocation dipole - vda and body force density f = t„ 
at C in an infinite space. The displacement field due to the 
dislocation dipoles and body forces vanishes in D~. The for
mulation in (Gosh et al., 1986) is obtained by partly integrating 
the second integral of (18) for z in D+ as 

- I ««*)= (u(r,*)ao- -W(I,z)d„,«-))tfa+2(-
k=l 

l)k+1u«\ 

(22T 

Fig. 2 A half plane subjected to surface traction or displacement 

du J 
= J^> a n d tangential tractions, tm calculated according to m 

on C for anisotropic materials are given by 

d„ = - 29?[AJ(w)Ar]t„ + 23}[AJ(co)B7]dm, ( 2 5 ) 

tm = - 29?[BJ(w)A7]t„ + 23?[BJ(co)B7]dm, (26) 
where 

J(co) = diag cos oi+ pi sinco cos co +p2 sm co cos co +p3 sin co 
-sin oi+pi cos co ' —sin oi+p2 cos co ' - s in oi+pi cos co 

'5«-l 

Wz) - L 

au aw 
- r - f c O a O - — (z,f)d,„(f) 

-r-fcnuf)-^(z.r)dm(f) 

rftr, (23) 

cfo-, (24) 

where (6) has been used. Equations (23) and (24) with /? = 
1/2 provide a pair of boundary integral equations for the 
tangential displacement gradients and tractions if the contour 
s is chosen to coincide with the boundary. Unlike (22), the 
kernels in (23) and (24) are single valued and no additional 
conditions need be imposed between the displacements and the 
displacement gradients. Equation (23) is similar to that given 
in (Okada et al., 1988). In (Okada et al., 1988), however, all 
displacement gradients «,vat boundary appear as variables so 
that the number of variables doubles. Either (23) or (24) can 
be solved to obtain the unknown tangential displacement gra
dients or tractions. Once the unknown boundary data are de
termined, the displacement gradients and traction in D and on 
the boundary C in any direction can be computed from (23) 
and (24). In particular, the normal displacement gradients, d„ 

(27) 

du 
where dm = —— is the tangential displacement gradient. In 

dm 
(22), the presence of u w is due to the multiple-valuedness of 
the matrix W. If the branch cut for the logarithmic functions 
in W is taken to extend from z to infinity and the branch cut 
intersects the boundary at m points, u w is the displacement 
at the k\h intersection point. The intersection points are ar
ranged in increasing distance from the branch point (i.e., the 
first intersection point is the nearest from the branch point). 
Although (22) is one order less singular than the conventional 
boundary element method it may not be convenient for nu
merical implementation for multiply connected regions as 
bookkeeping of the intersection points is required and the 
compatibillity condition between the displacements and dis
placement gradients must be incorporated. Equation (22) is 
essentially the displacement field due to a distribution of body 
forces with the density t„ and a distribution of dislocations 
with the density - dm at C. An alternative formulation can 
be obtained by considering the displacement gradients and 
tractions at a point z along an arbitrary contour s due to the 
dislocations and body forces. The result is 

in which co is the angle of the normal measured counterclock
wise from the * r axis . d„ and tm can also be computed directly 
from Hooke's law by 

d„ = (nn)_1[t„-(nm)dm], 

tm = (mn)(nn) t„ + [(mm) - (mn)(nn) J(nm)]dw 

where 
3 3 

j= 1 1= 1 

For isotropic materials, (28) and (29) become 

1 /(3 - 4v) - cos 2co - sin 2co \ 
(3-4p) + cos2co/ t n 

- (1 - 2c) + cos 2co 

(28) 

(29) 

(30) 

4/u(l - v) \ - sin 2co 

1 - sin 2co 

tm = 

2(1 - v) \(1 - 2c) + cos 2co sin 2co 

1 / - sin 2co (1 - 2v) + cos 2co 

(31) 

2(1 - v) \ - (1 - 2v) + cos 2co sin 2co 

e„„ = n rd„, <E„3=^eJd„ (33) 

_ju_ / l - c o s 2 c o -sin2co . 
l - y ^ - s i n 2 o . l+cos2co/ m" ( ' 

The normal strain e„„ and the antiplane shear strain <E„3 are 
given by 

"2 

where e3 is the unit vector in the x3-direction. The tangential 
normal stress <smm and antiplane shear stress am3 are given by 

Omm = mTtm, am3 = e[tm. (34) 

4 Analytic Solutions to Half-Plane Problems 
Consider a half-plane x2 > 0, - 00 < x, < 00 subjected 

to surface tractions or displacements at x2 = 0 as shown in 
Fig. 2. For the half-plane problems, (23) and (24) become 

1 

£ i - * i 
H t „ - S ^ ] ^ „ (35) du__l r 

dX\ ir J_, 

^-iL^h^ifh- (36) 
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In deriving (35) and (36), (10), (11), and (12) have been used. 
Equations (35) and (36) are valid for anisotropic as well as 
isotropic materials. For isotropic materials, the expressions of 
H, L, and S can be found in (Ting, 1986). With the following 
identities (Ting, 1986): 

H S r + S H = 0, 

LS r+SL = 0, 

H L - S S = I, 

(35) and (36) can be inverted to give 

1 t, 

du__}_ r° 
dXi 7T J_ 

-Xi 

1 

H rffi+H-1S 
3u 
dxi 

£ i - * i 
L'%d^-L-lS\ 

(37) 

(38) 

If surface displacements are prescribed, (37) yields the solution 
for the resulting surface tractions. Similarly, if surface trac
tions are prescribed, (38) gives the solution for the resulting 
surface displacements. Equation (38) specialized for a line force 
agrees with the previous result by Barnett and Lothe (1975). 

5 Numerical Implementation 

Equations (23) and (24) can be solved numerically in the 
same manner as in the conventional boundary element method. 
For simplicity, let the boundary C be approximated by TV line 
segments over which the normal tractions and tangential dis
placement gradients are assumed to be constant. The resulting 
discretized equations of (23) and (24) with the midpoints of 
the line segments chosen as the collocation points are 

N N 

S w>u*=2] U>„W=I,2,...,JV, 
k=\ 

(39) 

S (W*)yftUt=2 y-k(Am)kJ=l,2,..-,N, (40) 
* = 1 k=\ 

where (dm), and (t„), are the tangential displacement gradients 
and normal tractions at the y'th element and the elements are 
numbered consecutively along the direction of m. The matrices 
U , W*, and V* for./ jt k for anisotropic materials are given 
by the following analytical expressions: 

Uy; = $R[AG> r] , (41) 

C ' C+") 

Fig. 3 Notation for the kth boundary element 

Fig. 4 An infinite body with a circular hole subjected to uniaxial tension 

Journal of Applied Mechanics 

W^ = SR[AGy(tB
r], (42) 

(43) 
where 

•jk~ . diag 
717 [nk) log\tf+y2)-tik))' 

Wt (&+U2)~tik+l)\ 

W, [rt+U2)-tik+i) 

lik) sU°'+ 1 / 2 )-rP (44) 

In (44), f%> = cos dj + p a sin Oj with 6j being the angle between 
the y'th element and the x raxis, &k) = %\k) + pa%ik) with 

«{* ' , £f>) and {£[k+l\ $|*+1>) as the end .points of the *th 
element, f</+1/2) = £p+ 1 / 2 ) + pa&

+1/2> and «F + 1 / 2 ) , &+l/2)) 
is the midpoint of theyth element. (See Fig. 3 for the notation.) 
Fory jt k for isotropic materials, U*, W*, and V* are given 
by 

V*k= -9t[e't'.^'*,(U(ru+1/2,, r(*+1)) 
_ U ( r o + . / 2 ) ) 

- SKfe*!/-<W(W(fu+ U2), ^k+!)) 
_ w ( f 0 + i / 2 ) ( 

rW))L (45) 

W, jk = 

r m (46) 
yJk= -m[e'i6r6"\Y(tu+U2\ r (*+") 

Fory 

_y/>a+l/2) 

k for both anisotropic and isotropic materials, 

1 
IT" = V" = 0 W--
UJJ — VJJ - U, VTJJ 

I. 

r'))]. (47) 

(48) 

Either (39) or (40), which are referred to as type 1 and type 2 
equation, respectively, can be used to solve unknown boundary 
variables numerically. As an example, both equations were 
applied to solve the problem of an infinite body containing a 
circular hole subjected to uniaxial tension as shown in Fig. 4. 

Table 1 Hoop stress around circular hole under uniaxial tension for 
isotropic material 

0 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

type 1 

-0.960 

-0.844 

-0.512 

-0.002 

0.622 

1.287 

1.912 

2.421 

2.753 

2.869 

type 2 

-1.059 

-0.934 

-0.573 

-0.020 

0.658 

1.380 

2.058 

2.612 

2.972 

3.098 

exact 

-1.000 

-0.879 

-0.532 

0.000 

0.653 

1.347 

2.000 

2.532 

2.879 

3.000 
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Table 2 Hoop stress around circular hole under uniaxial tension for 
the composite material 

6 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

type 1 

-0.249 

-0.227 

-0.164 

-0.006 

0.104 

0.355 

0.791 

1.665 

3.519 

5.362 

type 2 

-0.280 

-0.260 

-0.200 

-0.100 

-0.005 

0.292 

0.728 

1.657 

3.836 

6.290 

exact 

-0.280 

-0.260 

-0.200 

-0.100 

-0.005 

0.292 

0.728 

1.659 

3.841 

6.270 

The materials considered were isotropic material and a graph-
ite-epoxy composite with the elastic constants given by 

Ei=138GPa, £,
2=10GPa, G12 = 6.5GPa, c12 = 0.21. 

In the numerical computations, 72 line elements were used to 
approximate the circular hole. The numerical results of the 
hoop stress along the circular hole are presented in Table 1 

for isotropic material and Table 2 for the composite material. 
Also shown in the tables are the exact values given by 
Muskhelishvili (1963) for isotropic material and Lekhnitskii 
(1963) for the composite material. In general, the numerical 
results agree well with the exact values. The maximum error 
occurs in the case of the composite material with type 1 equa
tion. 

6 Acknowledgments 
The research was supported by National Science Council of 

the Republic of China under grant NSC-79-0401-E002-22. 

References 
Altiero, N. J., and Gavazza, S. D., 1980, "On a unified boundary-integral 

equation method," Journal of Elasticity, Vol. 10, pp. 1-9. 
Barnett, D. M., and Lothe, 3., 1975, "Line force loadings on anisotropic half 

space and wedges," Physica Norvegica, Vol. 8, No. 1, pp. 13-22. 
Choi, J. H., and Kwak, B. M., 1989, " A boundary integral equation for

mulation in derivative unknowns for two-dimensional potential problems," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 56, pp. 617-623. 

Ghosh, N., Rajiyah.H., Ghosh, S., and Mukherjee, S., 1986, "A new bound
ary element method formulation for linear elasticity," ASME JOURNAL OF AP
PLIED MECHANICS, Vol. 53, pp. 67-76. 

Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Body, Holden-
Day, San Francisco. 

Muskhelishvili, I. N., 1963, Sowe Basic Problems of the Mathematical Theory 
of Elasticity, (J. R. M. Radok, trans.,) Noordhoff Groningen, The Netherlands. 

Okada, H., Rajiyah, H., and Atluri, S. N., 1988, "A novel displacement 
gradient boundary element method for elastic stress analysis with high accuracy," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 55, pp. 786-794. 

Rizzo, R., 1967, "An integral equation approach to boundary value problems 
in classical elastostatics," Quarterly Journal of Applied Mathematics, Vol.25, 
pp. 83-95. 

Stroh, A. N., 1958, "Dislocations and cracks in anisotropic elasticity," Phil
osophical Magazine, Vol. 7, pp. 625-646. 

Ting, T. C. T., 1986, "Explicit solution and invariance of the singularities at 
an interface crack in anisotropic composite," International J. of Solids and 
Structures, Vol. 22, No. 9, pp. 965-983. 

Wu, K.-C, and Chiu, Y.-T., 1991, "Antiplane shear interface cracks in 
anisotropic bimaterials," ASME JOURNAL OF APPLIED MECHANICS, Vol. 58, pp. 
399-403. 

348/Vol. 59, JUNE 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Z. L. Li 
Research Associate. 

J. D. Achenbach 
Fellow ASME. 

I. Komsky 
Research Engineer. 

Y. C. Lee 
Graduate Student. 

Center for Quality Engineering 
and Failure Prevention, 

Northwestern University, 
Evanston, IL 60208 

Reflection and Transmission of 
Obliquely Incident Surface Waves 
by an Edge of a Quarter Space: 
Theory and Experiment 
The reflection and transmission of a plane time-harmonic surface wave which is 
obliquely incident on the edge of a quarter space is investigated theoretically, nu
merically, and experimentally. The theoretical formulation of the problem, which 
takes advantage of the translational invariance along the edge of the quarter space, 
is reduced to a system of singular integral equations along axes normal to the edge, 
for the defracted displacement components on the faces of the quarter space axes 
normal to the edge. The truncation of these equations leads to the definition of 
reflection and transmission coefficients, R and T. The equations are solved for R, 
T, and the diffracted displacements by the use of the boundary element method. A 
self-calibrated experimental technique is proposed which deploys four surf ace wave 
transducers, and which removes the effects of variable coupling between the trans
ducers and the faces of the quarter space as the positions of the transducers are 
varied. The technique is particularly suited for the measurement of IR/TI as a 
function of the angle of incidence. Excellent agreement is observed between nu
merically and experimentally obtained values. 

1 Introduction 
The incidence of a Rayleigh surface wave on the edge of a 

quarter space, whose faces are free of tractions, gives rise to 
a complicated system of diffracted waves. At some distance 
from the edge the diffracted wave fields are dominated by a 
reflected surface wave on the face of the incident wave and a 
transmitted surface wave on the other face. The determination 
of the reflection and transmission coefficients presents a chal
lenging problem of elastodynamic wave mechanics. Normal 
incidence of a surface wave on the edge has been studied 
analytically, numerically, and experimentally by a number of 
investigators. Studies published prior to 1969 have been re
viewed by Knopoff (1969). In more recent work the formu
lation of the problem has been reduced to a system of integral 
equations which has then been solved numerically (see Momoi 
(1980) and Gautesen (1985,1986)). Recent experimental studies 
are those of Bond (1979) and Kinra and Vu (1983). For oblique 
incidence solutions to this problem, see Gautesen (1986). 

In the present paper, oblique incidence of a plane time-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
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ASME Applied Mechanics Division, Mar. 20, 1991; final revision, Nov. 12, 
1991. 

Paper No. 92-APM-28. 

harmonic surface wave, under an angle 8 with the normal to 
the edge, is considered. Since the geometrical configuration is 
independent of the coordinate direction along the edge (say, 
Xj) and since the incident wave is a plane wave, the wave system 
will be translationally invariant with respect to x3. Hence, all 
wavefields will have the terms exp(ikRXi sin 6) in common. By 
taking advantage of the translational invariance and by the 
use of an appropriate elastodynamic Green's function, the 
formulation of the problem has been reduced to a system of 
singular integral equations along the*! and*2 axes. This system 
has been solved numerically by the boundary element method 
to yield the desired reflection and transmission coefficients, R 
and T, as functions of the angle of incidence. 

The analytical and numerical work has been supplemented 
by an experimental investigation which deploys four surface 
wave transducers placed on two faces of an aluminum block 
at equal angles with the normals to the edge. The angles are 
increased in small steps. A new self-calibrating experimental 
technique is presented which removes the effects of variable 
coupling between the transducers and the faces of the specimen, 
as the angles of reflection and transmission are varied. This 
technique allows the measurement of \R\/\T\ in a simple 
manner. Theoretical and experimental results show excellent 
agreement. 

For normal incidence, it has been shown in earlier studies 
(see, e.g., Achenbach et al. (1980)) that the reflection and 
transmission coefficients at the edge of a quarter space can be 
used as a building block to construct the reflection and trans-
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Fig. 1 Rayleigh surface wave incident on the edge of a quarter space 

mission coefficients for a surface-breaking crack. For oblique 
incidence, reflection and transmission by a surface-breaking 
crack has been investigated by a singular integral equation 
method by Angel and Achenbach (1984). 

2 Rayleigh Surface Wave Incident on the Edge of a 
Quarter Space 

Figure 1 shows a homogeneous, isotropic, linearly elastic 
quarter space defined by xx < 0, x2>0, - o o < x 3 < oo. A time-
harmonic Rayleigh surface wave travelling along the free sur
face x2 = 0, is incident on the edge of the quarter space. The 
angle of incidence, 6, is measured from the positive Xi-axis. 
The displacement components of the incident wave may be 
written as 

u"(x) = «0j — 

jkR cosd\ 

\ a 

-IY*2 

2kRTL 

(k\-2k\)kL 
e - I Y*2( e ' * f i c o s l ' * l + '<K3 (1) 

where 

(kL, kT, kR) = w/(cL, cT, cR). (2a, b, c) 

Here, co is the angular frequency, cL and cT are the velocities 
of longitudinal and transverse waves 

c i = ( X + 2/*)/p, c\=\»./p, Oa,b) 

and cR is the velocity of Rayleigh waves. Also, X and \L are 
the Lame constants, p is the mass density, and 

(4) 

(5) 

TL = (kR-kl)y\ 

VT=(k\-k\)m, 

a = kRs\n6. (6) 

The interaction of the incident wave with the edge of the 
quarter space gives rise to an intricate system of waves. We 
write 

u(x) = u'"(x) + ud(x). (7) 

Since the geometrical configuration is independent of the 
^-coordinate and the incident wave is a plane wave, the system 
of waves will be translationally invariant with respect to the 
x3 coordinate. This means that u(x), u'"(x), and u (x) will de
pend on XT, only through the common term exp (Jaxi), where 
a is defined by Eq. (6). It is intuitively clear, and can be shown 

rigorously, that at some distance from the edge ud(x) separates 
into conical diffracted longitudinal and transverse waves con
nected by head waves, and plane reflected and transmitted 
Rayleigh surface waves. The reflected and transmitted surface 
waves are indicated in Fig. 1. The angles of reflection and 
transmission are equal to the angle of incidence. Since the 
conical waves show geometrical attenuation, and the surface 
waves do not, we may write 

for fixed x2 > 0, x\ — - °°, (8) 

«f(x)« 

RuRR(x), 

•• TUJ(X), for fixed x, <0 , * 2 - + °°. (9) 

where R and T are reflection and transmission coefficients, 
and ufR and ufR denote Rayleigh surface waves propagating 
in the negative X\ and positive x2 directions, respectively: 

uRR(x) = uc 
1 

2A:Rr 

-rL*2 

(k\-2k\ 

u™(x) = «0J7r I kRcosB \eT^ 

2kRTL 

/Ticosth 

| ikR | e - r ^ |e- ' '* / J C 0 S t e i + to3> (io) 

\rVsin0/ 

- ikR \ 

\TT&m6l 

The purpose of the present paper is to determine the re
flection and transmission coefficients, R and T, as functions 
of the angle of incidence. 

Full-Space Green's Function due to a Spatially Har
monic Line Load 

The solution to the diffraction problem formulated in the 
previous section will be obtained numerically by solving a 
system of boundary integral equations by the use of the bound
ary element method. The formulation of the system of bound
ary element equations is based on an elastodynamic Green's 
function which will be derived in this section. 

The governing equations for time-harmonic elastodynamic 
motion are given by (see, for example, Achenbach (1973)) 

Oijj + P0> Ui- -pfh (12) 

where 07,, «,-, and /• are the components of the stress tensor, 
the displacement vector, and the density of the body forces, 
respectively. In Eq. (12) and in the sequel, Latin subscripts 
take the values 1,2 and 3, the summation convention is implied, 
and ( ), j=d( )/dXj. The relation between stresses and dis
placement gradients is expressed by Hooke's law: 

Oij = \ukik6ij + ix (Ujj + ujj), (13) 

where 5y is the Kronecker delta. For convenience, we will use 
a two-dimensional position vector, X, in the xtx2 plane. 

X = (*i , *2) 

Now, consider the following problem 

<j?jkJ (x;Y) + p<A£(x;Y)= -p /g (x ;Y) (14) 

where 
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p/£(x;Y) = dadOd -y> )6 (x2-y2)e-'^ ^0k,p = 5(x,-yl)S(x2-y2)ui 

-i: 6ik8(xi-yl)S(.x2-y2)d(x3-y3)e-ia^dyi. (15) 

Here, pffk defines a line load pointed in the ^-direction applied 
at X\ =y\, x2=y2, with the harmonic intensity exp(- iax3). The 
solutions to (14), ufk and a°k, will be termed the displacement 
Green's function and the stress Green's function, due to a 
spatially harmonic line load. Let Uik (x;y) denote the full-space 
displacement Green's function due to a point load, i.e., the 
displacement at x in the /'-direction due to a unit load at y 
applied in the ^-direction. The displacement Green's function 
ufk can be obtained by the use of superposition as 

«*(x;Y) -i: Ulk(x;y)e~ia^dy3 = u?k(X;Y)e-iax\ (16) 

where 

"* = 4~ W? (kTR)hk + Lik[H^\kTR)-H^(kLR)}. (17) 

Here, H^ ( ) is the Hankel function of the zeroth order of 
the first kind, and Lik is the following operator: 

9 • d _2 
<W>0< T — I id ( hk&ai + hfiak ) a "83k53i OXaOXp OXa 

(18) 

In (18) and in the sequel, the summation convention is also 
implied for Greek subscripts which, however, only take the 
values 1 and 2. Other relevant quantities in (17) and (18) are 

R = [(.xi-yi)
2+(x2-y2)

2]l/2, (19) 

and 

kT={^T-^)m, A:L = (Ai-a 2 ) 1 / 2 , (20a,b) 

where kT and kL are the transverse and longitudinal wave 
numbers, defined by (2a,b), respectively. 

An explicit expression for Uik (x;y) and the details of the 
derivation of Eq. (16) and (17) are given in the Appendix. 
Substituting (16) into (13), we obtain the stress Green's func
tions due to a spatially harmonic line load 

o?jkW) = oUX;Y)e-iax\ (21) 

where 

a gt(X;Y) = \(u°k,y - iau3k
G)Sij 

+ n\u?k,y8yj + ufk,y6yi - ia(u%63J + K$33 ()] . (22) 

4 Integral Representation for the Edge-Diffracted Field 

The diffracted fields satisfy 

(23) 4J + P^2U1 = 0. 

As was mentioned in Section 2, all field variables have the 
common factor exp(/'ax3). We write 

uf(,x) = uf(X)eiax\ ai{x) = afjOi.)eiaxK (24) 

Substitution of (24) into (23) yields 

(25) oforfX) + faffg (X) + ports? (X) = 0. 

Note that the Green's functions corresponding to a spatially 
harmonic line load satisfy the following equations: 

5g t i <KX) - iaogt(X) + po>2ug(X) 

= -5ik8(xi-yl)8(x2-y2). (26) 

Now, we define a tensor Wpk(X) as 

W&k = o%ul-u1-a%k. (27) 

Differentiating (27) with respect to x&, we obtain 

+ 4"*,/s - iaoi3u?k) - $%kui3 + iaa?3ku1), (28) 

where equations (25) and (26) have also been used. 
We also have 

4&J = "fa""3 itftjfije - iaufay)e-iaX3 

= ^u?k,n-iaaiu?k, (29) 

tfirfj = ^ " ' " 3 ( u l A + iau1b3j)e
la^ 

= a?pku?,0 + iaa%kui. (30) 

By the use of Hooke's law, Eq. (13), it follows that 

OijUikj = OijkUij. (31) 

Equation (28) can be simplified by using (29)-(31) to the form 

Wfsk3 = b(xx-yx)b(x2-y2)u
d
k. (32) 

Consider a two-dimensional domain D in the X(X2-plane. Let 
3D denote the boundary of D. Integrating Eq. (32) over D and 
using Stokes theorem yields 

e(Y)ud
k(Y)=\ W^ds(X)=\ W0kn0dl(X) 

•>D •'dD 

1 = mmn,,) - (a5*/ifl)5?]<ff(X), (33) 
JdD 

where rig is the outward normal to the 3D and 

f l , YeZ> 
e(Y) = (34) 

CO, Y i D. 
Equation (33) is the integral representation for the diffracted 
field. 

5 Boundary Integral Equation for the Edge-Diffracted 
Field 

In the limit Y - a D , Y t D, (33) becomes 

°8D 
(MfkO%-o?mu1)n0dl=Q, (35) 

which is the boundary integral equation for the diffracted 
fields. For the waves diffracted by the edge of a quarter space, 
Eq. (35) can be written as 

( - ugoi + a?2ku1) dXl + {u?kai - c?lku?)dx2 = 0, 
- o s Jo 

f o r ^ < 0 , y2 = 0~ and j , = 0 + , y2>0. (36) 

By the use of the traction-free conditions, 

(<# + ofjdnp = 0, for y{ < 0, y2 = 0 and y2 > 0 , ^ = 0 

and 

og = 0, for .y, < 0 ,^ 2 = 0. 

Equation (36) reduces to 

J O poo pco 

cikufdxi-\ o°k17jdx2= \ u?ka'ndx2 

foryi<0,y2 = 0~andy1=0+,y2>0. (37) 
Equation (37) is the integral equation for the edge-diffracted 
displacement fields uf on the free surfaces of the quarter space. 
In (37), the integral paths extend, however, to infinity, which 
is not suitable for a numerical procedure. These integral paths 
can be reduced to finite length by the use of Eqs. (8)-(9). If 
\X\A I (XIA < 0) and xu are large enough so that for x2 = 0, 
Xi < X\A the displacement fields uf(x) can be expressed ap
proximately by (8), and for xl = 0, x2 > x2A by (9), we can 
rewrite Eq. (37) as 
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{
u rx2A PA1A 

o?lku1dxx-\ aflkufdx2 + R\ agkufRdxx 
xlA

 Jo J - o o 

{00 pOO 

o?lku™dx2 = ufkotdxj 
X2A J " 

for y{<0, y2 = 0~. a n d ^ 1 = 0 + , > ' 2 > 0 . (38) 

If off denote the stresses corresponding to ufR, we can write 

S X\A P° 

0%kufRdXi= - J d&uTdxt 

*IA 

\ (u?kafl
Rdx2-a?uufR)dx2, (39) 

where af2
R = 0 on x2 = 0, x\ < 0 has also been used. Using 

a similar approach, we can also obtain: 
f"2A "° 

*2 = 

"X1A 

- G —TR j „ I - G T;TRJV 1 /TlO-TR 

- o g t S / V f i . (40) 
Since off, oif, and wf* decay exponentially as x2 increases, the 
upper limit of integration in the integral on the right-hand side 
of (39) may be truncated at, for example, x2 = x2A, without loss 
of accuracy. Also, since afR and ufR decay exponentially as 
Ui I increases, the lower limit of integration in the integral on 
the right-hand side of (40) may be truncated at X\ = xiA. 
Substitution of (39) and (40) into (38) then yields: 

{° rxlA 

oakufdxi - oflkufdx2 
X\A J ° 

-R 

+ T 

^kufRdXl-\ (Upf,R-d?lkU
RR)dX; 

rx2A c° 
J d?lkufRdx2+\ (agog" -d%kufR)dXl 

!

x2A 
1 

n 

u°^tdx2. (41) 

Equation (41) defines the system of boundary integral equa
tions which can be solved in the usual manner by the boundary 
element method. Note that the unknowns in (41) are uf, R, 
and T. 
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6 Numerical Results 
In the numerical calculations, the wavelength of transverse 

waves, AT- = 2ir/kT, is used as the normalization factor for 
lengths. The lengths of the elements vary with distance from 
the edge. If xic is the * rcoordinate of the center of an element 
on x2 = 0, X\ < 0, the size of the element, say h, increases as 
Ixic I increases until h = hc (here, hc is a constant, for example, 
when 6 = 0, hc = 0.1 \T). As lxicl increases further, the 
elements remain constant in length, namely hc. An analogous 
variation of element lengths was implemented on the boundary 
X\ = 0, x2 > 0. Also, as 6 increases, the value of hc required 
for the desired accuracy decreases. In addition, appropriate 
values of l*Ml and x2B have to be selected. The larger the 
values of \xlA I and x2B, the larger the number of elements in • 
the solution of the system of boundary integral equations. For 
different numbers of elements, the calculated absolute values 
of the displacement components in the x2 direction, I u21, are 
shown in Fig. 2(a) for 6 = 0 deg, in Fig. lib) for 6 = 45 deg 
and in Fig. 2(c) for 0 = 70 deg. It was found that 150 elements 
on each side of the edge yield results of acceptable accuracy. 

As a check on the accuracy of this computation for the case 
8 = 0, the values of the reflection and transmission coefficients 

Fig. 2 Absolute values of the components in the x2-direction of the 

diffracted displacement fields. Poisson's ratio v = .28. (a) 9 = 0 deg, (b) 

e = 45 deg, (c) e = 70 deg 

obtained in this work are compared in Table 1 with those 
obtained by Gautesen (1985). The agreement is very good. 
Figure 3 shows the amplitudes of the reflection and transmis
sion coefficients versus the angle of incidence 6 for v = 1/3. 
It is noted that the surface wave is completely transmitted at 
61-75 .5 deg. 

When the angle of incidence exceeds a critical angle, namely, 
when 

f j s s i n - 1 ^ (42) 

no diffracted body waves exists. Consequently, all incident 
energy must be carried away by the reflected and transmitted 
Rayleigh surface waves. Hence, we will have the following 
energy balance 

\R\2+\T\2=\ for0>0 c . (43) 

For Poisson's ratio v = 1/3, Eq. (42) yields 0C = 68.74 deg. 
For all values of 8 > 6 „ the numerically calculated values of 
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Table 1 Absolute Values and Phases of the Reflection and Transmission 
Coefficients for Normal Incidence 

Gautesen 
This work 

Gautesen 
This work 

Gautesen 
This work 

Poisson's ratio 

0.17 
0.17 

0.25 
0.25 

0.33 
0.33 

\R\ 

0.27 
0.26 

0.32 
0.32 

0.39 
0.40 

in 
0.68 
0.68 

0.68 
0.68 

0.67 
0.67 

<t>R 

50 deg-55 deg 
53 deg 

39 deg ~ 45 deg 
38 deg 

29 deg-32 deg 
38 deg 

<t>T 

~ - 80 deg 
- 80 deg 

~ - 8 1 deg 
- 80 deg 

~ - 82 deg 
- 82 deg 

Fig. 3 Absolute values for the reflection and transmission coefficients 
versus the angle of incidence, 6. Poisson's ratio v = 1/3. 

(a) 

\ 1 \ 

/ A / 

9 

> 9 

x, 

9 

e < 

/ i / 

\ 3 \ 

x3 

(b) 

Fig. 4 Folded out depictions of transducer placements 

\R\ and 171 satisfy li?l2 + I712 = 1 to seven significant 
digits, which provides a check on the accuracy of the numerical 
calculations. 

7 Experimental Work 
Experimental results were obtained by the use of surface 

wave transducers, which were placed on two perpendicularly 
intersecting faces of a polished aluminum block. The trans
ducers were coupled to the aluminum by the application of a 

thin layer of oil couplant. In principle, it would seem to be a 
rather simple experiment to measure the reflection and trans
mission coefficients for comparison with the theoretical results. 
A transducer placed at a desired angle of incidence, 6, produces 
the signal. A second transducer, placed on he same face under 
the angle of reflection 6, receives the reflected signal, while a 
third transducer, placed on the intersecting face of the block, 
again under the angle 0, received the transmitted signal. A 
folded-out depiction of this configuration is shown in Fig. 
4(a). Unfortunately, this is not an effective way of measuring 
the reflection and transmission coefficients, primarily because 
the coupling between the transducers and the specimen is un
predictable and very difficult to reproduce when the trans
ducers are moved from one angle of incidence to another. 
Hence, there is no guarantee that the incident wave is the same 
for each angle of incidence, nor that, due to variation in the 
coupling, the reflected and transmitted waves would be meas
ured with the same response functions by the receiving trans
ducers. Since it is not possible to calibrate the complete set
up for every angle of incidence, this paper proposes a config
uration of transducers suitable for a self-calibrating measure
ment technique. This is feasible in a simple manner for the 
measurement of IRI /1 71, rather than IRI and 171 separately. 
For comparison of theoretical and experimental results, the 
quantity IT? I /1 71 provides almost equally useful information. 

A configuration of transmitting and receiving transducers 
for a self-calibrating technique is shown in Fig. 4(b). Four 
transducers are used. A special holder was designed to move 
and align these four transducers over incremental values of 
the angle 8. The coupling must be of good quality, but by 
virtue of the self-calibrating features of the technique it does 
not have to be the same as the angle of incidence is varied. In 
the experiment both transducers 1 and 4 are fired in sequence, 
and for both cases, the reflections and transmissions are meas
ured. 

Suppose transducer 1 is fired first. In the frequency domain 
the amplitude of the voltage at transducer 3 may be expressed 
in terms of response functions. We may write for the voltage 
3: 

Vn = ArDirT-DorS3. (44) 

Here the response function, Au includes the signal strength 
of transducers 1 and the signal transmission from transducer 
1 to the specimen. D^ is the response function for transmission 
along the distance from 1 to 0 including attenuation and dif
fraction, T is the transmission coefficient of the edge, Doi is 
the response function for transmission along the distance from 
0 to 3, and S} is the response function of transducer 3, including 
transmission from the specimen to the transducer. Similarly, 
we have for the reflected signal 

Vi2=ArDl0-R-D02-S2. (45) 

Similar expressions are obtained when transducer 4 is fired. 
We have 

V42 = AvDi0-T-D02-S2 

V4i=A4-D40-R-Do,-S3 

(46) 

(47) 
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Punc ion 
Generator 

Gate 
Oscillosc ope 

Fig. 5 Schematic of the set-up of the experiment for oblique incidence 

Oscilloscope 

Fig. 6 Schematic of the set-up of the experiment for normal incidence 

Next, we consider the ratio Vw V4i/V13- V<a- It then easily 
follows that 

1/2 
K12-K43 

Va-Va 
(48) 

It is of great importance that by the present technique the ratio 
IJ? I/I IT I can be measured independently of the distance and 
the surface conditions between each transducer and the edge, 
and independently of the coupling between the transducers and 
the surface of the specimen. When moving the transducers 
from one angle of incidence to another, it is virtually impossible 
to maintain these conditions the same for a sequence of tests. 

As shown in Fig. 4(b), four transducers (two transmitters 
and two receivers) are used for measurements at all angles of 
incidence, except 8 = 0. A schematic of the set-up for the 
experiment is shown in Fig. 5. For 6 = 0, two transducers are 
used. For this case a schematic is shown in Fig. 6. Equation 
(48) is now replaced by 

Vn-Vv 

VirVn 

(49) 

1.6 

0.4 

solid line: theoretical curve 
triangles: experiment results for aluminum specimen 

v=l/3 

' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' " ' I ' ' 
0 10 20 30 40 50 60 70 80 90 

Fig. 7 Comparison of theoretical and experimental values of I RfT\ 

To maintain exactly the same conditions of electrical signal 
generation and amplification, the two transducers are con
nected in parallel. Since the measured voltage amplitudes for 
the transmitted signals, Vn and V3l, are overlapping, the sig
nals used in Eq. (49) are taken as half the total measured 
amplitude. To prevent overlap of the signals Vn and K33 the 
transducers should be installed at different distance from the 
edge. 

Figure 7 shows a comparison of the theoretical and exper
imental values of \R\/\T\. The agreement is excellent. 
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A P P E N D I X 

Displacements Due to a Spatially Harmonic Line Load 
The displacement in the x, direction at position x due to a 

time-harmonic point load applied in the xk direction at position 
y may be written as 

£4t(x;y) : 
1 

4irn 
Ud^^-UAr) 

dr j)r_ 

dx, dxk 
(Al) 
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where r = [(xi-yl)
2+ (x2-y2)

2+ (x3-y3)
2]w\ and Let R = [(xl-yl)

2 + (x2-y2)
2]U2

y and 

U, l+; 

U2 = 1+-

kTr (kTr)2 r 

(kAa 

\kT) 

3; 3 
kTr (kTr)2 

i 1 
/tLr (ArLr)

2 

e>kTr 

r 

{£) 
\ 3/ 3 

l H i 

kLr (kLrf 

We have 
JkLr 

(A2) 

_V3-x3=/?sinh(??). 

r=[R2+(y3-xi)
2]1/2 = RcosHv). 

(A5) 

(A6) 

p * L r 

(A3) 

Substitution of (A5) and (A6) into the right-hand side of (A4) 
yields 

S CO 

e!7J[*{Cosh(i;)-a sinh(ij)] J , ^ j x 

- 0 0 

Let5 = sinh~' [^ / ( /^-a 2 ) 1 7 2 ] , then (A7) becomes 

/ = e - t e 3 j e'«<^-«2)1/2coSh(,-^r) = e - ;«3 7 r / / ^i ) (iiR)t 

(A8) 

where Arf = (&f-V)1 / 2 , Re(k^) > 0. In the last step of (A8) 
f" ] f" 1 the integral representation of the Hankel function of the zeroth 

- - e '* e 'V+ ' a<*3 ^)rfy3 (A4) order of the first kind has been used. 
°° -00 Substituting (A1)-(A3) into the integral of Eq. (16) and using 

where k^ = kL or A:r. (A8), we obtain Eqs. (16) and (17). 

In these expressions, kL and kT are the longitudinal and trans
verse wave numbers defined by (2a,b). 

Consider the integral 

J 00 f - '^3 ^ 

-70*3 
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Stress Wawe Radiation From a 
Crack Tip During Dynamic 
Initiation 
Plate impact experiments are conducted to study the dynamic fracture processes 
which occur on submicrosecond time scales. These experiments involve the plane 
strain loading of a plane crack by a square tensile pulse with a duration of ap
proximately one microsecond. The crack-tip loading rates achieved are Kt — 10s 

MPa\[m s~', which are approximately two orders of magnitude higher than those 
obtained in other dynamic fracture configurations. Motion of the rear surf ace caused 
by waves diffracted from the stationary crack and by waves emitted by the running 
crack is monitored at four points ahead of the crack tip using a laser interferometer 
system. The measured normal velocity of the rear surface of the specimen agrees 
very well with the scattered fields computed using an assumed elastic viscoplastic 
model, except for the appearance of a sharp spike with a duration of less than 80 
nanoseconds. This spike, which is not predicted by the inverse square root singular 
stress fields of linear elastic fracture mechanics, is understood to be related to the 
onset of crack growth and coincides with the abrupt and unstable ductile growth 
of a microstructural void to coalescence with the main crack. The crack initiation 
process is modeled as the sudden formation of a very small hole at the crack tip. 
This admits the possibility of dynamic crack-tip stress fields with crack-tip singu
larities stronger (~r~3/2) than the inverse square root singular fields of fracture 
mechanics. The elastodynamic radiation resulting from the formation of a traction 
free hole at the crack tip is applied first to the case of antiplane shear deformation 
and then to the corresponding plane strain problem. The radiated fields predicted 
by the strongly singular solutions are found to be in good agreement with the spikes 
observed in the experiments. The radius of the hole, which appears as a parameter 
in the solution for the radiated field, agrees reasonably well with the interparticle 
spacing. 

1 Introduction 
A central issue in the dynamic fracture of materials is the 

initiation of fracture from a pre-existing crack in a deformable 
body due to stress wave loading. The effects of material inertia 
and strain rate sensitivity are called into play under high rate 
loading conditions, and fracture may evolve differently under 
these circumstances than under quasi-static loading. The inter
pretation of experiments involving dynamic fracture under 
stress wave loading has been a difficult task, in part because 
the laboratory specimen configurations commonly used in dy
namic fracture testing cannot be analyzed by existing mathe
matical methods, even for linear elastic material response. 
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Materials Meeting, Apr. 28-May 1, 1992. 

Discussion on this paper should be addressed to the Technical Editor, Pro
fessor Leon M. Keer, The Technological Institute, Northwestern University, 
Evanston, IL 60208, and will be accepted until four months after final publication 
of the paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received 
by the ASME Applied Mechanics Division, Apr. 3, 1991; final revision, Dec. 
11, 1991. Associate Editor: S. K. Datta. 

Paper No. 92-APM-33. 

A particular configuration for which it is possible to obtain 
an exact solution for the elastodynamic stress and deformation 
fields from a boundary value problem which models the in
teraction of a transient stress pulse with a crack is the plane 
strain configuration of a half plane crack, in an otherwise 
unbounded body, subjected to plane-wave step loading. This 
is the first transient plane strain elastodynamic crack problem 
involving wave scattering that was successfully analyzed 
(deHoop, 1958). In the course of obtaining the solution by 
integral transform methods, deHoop presented the modern 
version of the technique now known as the Cagniard-deHoop 
method of double transform inversion. The problem and its 
solution procedure are discussed in detail by Freund (1990). 
. Ravichandran and Clifton (1989) developed an experimental 
technique which, for all practical purposes involves loading a 
half plane crack by a plane tensile pulse. In this experiment, 
the specimen is a metal disk 6.25 cm in diameter and 0.8 cm 
thick. The disk is prepared with a planar crack on its midplane, 
with the crack edge coinciding with a diameter of the disk. 
The disk specimen is loaded in a plate impact apparatus by 
projecting a second disk against the cracked disk at high speed. 
The impact results in a compressive wave in the cracked disk. 
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~p(t) 
y 

IMPACT FACE 

Fig. 1 Schematic of the experimental configuration 

The magnitude of this wave is determined by the impact ve
locity and the properties of the two materials; the duration is 
determined by the thickness of the impacting disk. The com
pressive wave travels through the specimen, passing the initially 
closed crack plane with little effect. The wave reflects from 
the traction-free back surface of the specimen as a tensile pulse, 
and it is this pulse which travels back to load the crack. The 
interaction of the plane pulse with the crack preserves the 
conditions of plane pulse loading of a half plane crack in the 
middle part of the specimen until scattered waves reflect back 
from the boundaries to the crack edge, or until unloading waves 
from the periphery of the disk reach the middle portion of the 
specimen. The scattered wave field produced by the interaction 
of the crack with the stress pulse is monitored on the back 
face of the disk specimen by means of a laser interferometer 
system. Recently, Prakash and Clifton (1992) used an exper
imental procedure similar to the one developed by Ravichan-
daran and Clifton (1989) to study fracture initiation in AISI 
4340 VAR steel, at crack-tip loading rates of approximately 
108 MPa\fins~i (see Fig. 1). They monitored the motion of 
the rear surface at four different points simultaneously during 
the experiment by means of a multiple beam laser interfero
meter system designed for this purpose. The present study was 
motivated by a particular feature of the recorded scattered 
wave field that could not be explained on the basis of standard 
approaches to the problem. 

The measured normal velocity of the rear surface of the 
specimen at a typical monitoring point, shown in the schematic 
diagram of Fig. 1, agrees very well with computed scattered, 
fields, using an elastic viscoplastic constitutive model, except 
for the appearance of a sharp spike of very short duration. 
Based on observations with the multiple beam interferometer, 
the arrival times of the spike at different measurement points 
is consistent with wave emission from a source at the crack 
edge. The suggestion arises immediately that the spike is related 
to the onset of crack growth. Unfortunately, no known wave 
solutions for dynamic fracture initiation include such a spike 

X 

Fig. 2 Coordinate system placed at center of a very small hole intro
duced at the crack tip 

in particle velocity in the radiated field. Based on scattering 
theory, the back surface signal must be relatively insensitive 
to a small initial crack-tip root radius or a plastic zone asso
ciated with introduction of the initial crack. Furthermore, elas-
todynamic solutions for crack growth accelerating from zero 
initial speed show no sharp signal. Even the abrupt onset of 
crack propagation at a high speed can result in propagating 
jumps in stress and particle velocity at the wavefronts, but not 
in a spike of the kind observed. 

A suggestion of an approach to be considered comes from 
the elastodynamic solution for a center of expansion with a 
step-function time dependence. In this case the jump in particle 
velocity at the wavefront is infinite, which is suggestive of a 
spike-like velocity-time profile when finite risetimes are con
sidered. While the center of expansion solution is not applicable 
directly to the case of dynamic fracture, because it does not 
satisfy the boundary conditions on the crack face, the features 
of the solution suggest the promise of considering crack-tip 
fields which are more strongly singular than r~xn where r is 
the radial distance from the crack tip. Use of such highly 
singular fields is allowed only if these fields are understood to 
apply outside a small hole centered at the crack tip. Thus, in 
this analysis the elastodynamic stress wave radiation resulting 
from the sudden formation of a traction-free hole at the tip 
of a loaded crack is studied. The sudden formation of a hole 
at the crack tip, no matter how small, admits the possibility 
of dynamic stress fields with singularities stronger than r~ W2. 
For example, if the point r = 0 is within a small hole, the 
local stress field can vary as r"3/2. 

The study is reported in the following way. Section 2 includes 
an analysis of a problem of antiplane shear deformation. A 
cracked elastic solid is loaded so that a certain level of stress 
intensity factor is achieved. Then, a hole is suddenly introduced 
at the crack tip by requiring the traction to be suddenly reduced 
to zero on a circle of very small radius centered at the crack 
tip. The complete field for this problem can be obtained in a 
relatively straightforward manner. From the result, it is seen 
that the solution corresponds to a particular field in elasto
dynamic crack analysis called the influence function or weight 
function for the configuration. The plane strain problem of 
interest is then analyzed in Section 3 within this influence 
function framework, following an approach developed by 
Freund (1990). In the final section, quantitative results for the 
radiated fields predicted by the strongly singular solutions are 
compared to the magnitudes of the spikes observed in the 
experiments. 

2 Preliminary Analysis for Antiplane Shear 
Consider a half plane crack with traction-free faces in an 

elastic body under conditions of antiplane shear deformation. 
Initially, the body is subjected to equilibrium loading, or rel
atively slowly applied remote loading, so that an equilibrium 
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(4)

(3)

(1)

(14)

(13)

Fig. 3 Dynamic crack advance In the central region of the specimen:
Shot 9005

stress intensity factor field is established in the vicinity of the
crack tip. With respect to the cylindrical coordinates intro
duced in Fig. 3, the traction on a small circle of radius E centered
at the crack tip is given by

ko . 1 Ll

Trz"'" ~ SIn -2 (J

'Y 27rE

where ko is the initial value of the stress intensity factor.
Suppose that at a certain instant oftime, say 1 = 0, a traction

free hole with radius E and centered at the crack tip suddenly
appears. As a result of the appearance of this hole, a stress
wave is radiated away from the edge of the crack, and it is
the purpose of this section to examine the main features of
this stress wave. The wave field is determined from the solution
of a particular boundary value problem. In cylindrical coor
dinates, the particle displacement in the z-direction w(r, B, I)
is governed by the scalar wave equation

a2w 1 aw 1 a2w 1 a2w

ar2+;: a;+? aB2 =-;} fijf (2)

where c is the shear wave speed in the material. The solution
is subject to the initial conditions

w(r, B, O)=wt(r, B, 0)=0

throughout r > E, the boundary conditions

Toir, ±7r,I) =0

for r > E, and the boundary condition

TriE, B, I) = - h (I) .~ sin -2
1

B (5)
'Y 27rE

where h (I) is the unit step function. The last condition ensures
that the surface of the small hole is indeed traction free for 1
> O.

To solve this boundary value problem, the Laplace trans
form on time, defined by

w(r,B,s) = re-stw(r,B,I)dl, (6)

is first applied to the governing equations and boundary con
ditions. The resulting time-independent Helmholtz partial dif
ferential equation admits a separable solution of the form

W(r,B'S)=~1 BJ(l\n(~)Sin(AnB) (7)

where Bn are constants to be determined from the boundary
condition at r = E, Kl\ is the modified Bessel function of the
second kind of order ~n> and

An = - en; 1) n=l, 2, ..., 00. (8)

If the complete traction distribution on r = E by the initial
equilibrium field is to be negated by the dynamic field, then
all of the coefficients B; are nonzero and they can be deter
mined explicitly. However, if E is very small compared to any
other physical dimensions in the configuration, then the trac
tion on r = E is dominated by the stress intensity factor term

358/ Vol. 59, JUNE 1992

(1). In this case, B; = 0 for n 2: 2, and B 1 is determined from
the boundary conditions (5). From Hooke's law,

~ aw
Trz(r,B,s) = J1. -a (r,B,s) (9)r .

where p. is the elastic shear modulus. If this equation is to be
enforced on r = E, - 7r < B < 7r, then the left side is given
by (5) and the right side is given by the derivative of (7) with
respect to r. This provides an equation for Bj, yielding

c ko 1
n,= ;p.~ K;n<ESIc) (10)

where the prime denotes the derivative of the modified Bessel
function with respect to its argument. The complete solution
to the radiation problem is then

~ c ko K II 2(rslc) . 1
w(r,B,s) = --:2 .~ K' ( I) sm -2 B. (11)

s-p. 'Y 27rE 112 ES c

The modified Bessel function can be eliminated from (11)
by means of the identity -.J7rI2ZKII2(z) = (7rl2z)e- Z (Abra
mowitz and Stegun, 1970). Formal Laplace transform inver
sion then yields

W(r,B'I)=$;E~O (l-exp[ _~ (l_
r: E)])

x sin ~ Bh[l- (r-E)/c]. (12)

This is the desired elastodynamic field, representing the ra
diation produced by the sudden introduction of a small stress
free hole at the crack tip.

The features of this field are evident from the solution (12).
First, the displacement field is square root singular in r as r
- 0, so that the corresponding stress components are singular
as r- 312 at the crack tip. Solutions having this property are
customarily rejected in elastic fracture mechanics on the phys
ical grounds that the displacement is unbounded at the crack
tip and the mechanical energy density of the deformation field
is unbounded. With the introduction of the small hole at the
crack tip, however, both the displacement singularity and the
energy density singularity are eliminated from the field, no
matter how small the hole may be. With this proviso, the
solution (12) is acceptable for any E > O.

The solution also shows that the particle displacement dis
tribution is continuous at the wavefront for any nonzero value
of E. During the early time period (i.e., just behind the wave
front) the particle displacement increases linearly in time and
then grows very rapidly to the long-time limiting value of the
solution (12). Thus, the increment in displacement AW in the
immediate vicinity of the wavefront is

$;Eko . 1
AW= --sm-B.

7rr p. 2

This increment in displacement AW can also be obtained di
rectly from Eq. (11) in the limit when E becomes vanishingly
small. By replacing the factor K;n(ESlc) in (11) by its asymp
totic form as es/c - 0 (Abramowitz and Stegun, 1970), the
formal inversion yields

$;Eko . 1 ( r)w(r,B,I) - - - sm - Bh 1-- ,
xr p. 2 c

which yields (13), when evaluated at the wavefront-that is in
the limit 1 - ric. This rapid growth in displacement at the
wavefront can be understood to arise from the fact that the
traction (5) on r = E is reduced to zero abruptly. If instead,
the traction on the small hole is reduced to zero continuously,
but in a very short time, the displacement at the wavefront
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given by (12) still provides a good approximation. Associated 
with the particle displacement is the particle velocity given by 

k0 c ( r—e 
- exn - — I t- — 

2e \ c 
: exp 

. 1 „ , r-e 
sm - 8 for t> . 

2 c 

(15) 

This solution represents a jump or a discontinuity in the particle 
velocity traveling with the wavefront. At times just after the 
passage of the wavefront, the particle velocity decays rapidly 
towards zero for small e. This sudden jump and then a very 
rapid decay in the particle velocity represents a spike in the 
velocity time profile. This is precisely the type of feature ob
served in the experimental records in the study by Prakash and 
Clifton (1992). Consequently, the corresponding plane strain 
problem is analyzed in order to determine whether or not the 
displacement increment for the spike, given by (13) provides 
a reasonably accurate estimate of the magnitude of the ob
served spike for numerical values of the parameters which are 
consisted with the experiments. 

The corresponding plane strain elastodynamic crack prob
lem cannot be handled in the same way as the case of antiplane 
shear deformation analyzed above. The governing equations 
are far more complex and the Laplace transformed partial 
differential equations for particle displacement components 
do not admit separable solutions, in general. Consequently, 
another approach must be followed. The solution (13) has the 
general features of the so-called transient weight function of 
dynamic fracture mechanics introduced by Freund and Rice 
(1974). That is, even though the solution was obtained by 
solving a particular boundary value problem for the sudden 
appearance of a very small traction-free hole at the tip of a 
stressed crack, its features suggest that it could be derived for 
the cracked body without the need to introduce the hole, pro
vided only that singularities in stress and displacement as r — 
0 are admitted which are stronger than those customarily viewed 
as being of relevance in dynamic fracture mechanics. In effect, 
what is sought is an elastodynamic field which represents ra
diation from a crack tip even though the crack faces are traction 
free and the body is initially stress free and at rest. If the 
strength of singularity is restricted to that in traditional fracture 
mechanics models, then the uniqueness theorem of elasto-
dynamics leads immediately to the conclusion that there are 
no nontrivial solutions to the problem. However, if fields with 
stronger singularities are admitted, then the boundary value 
problem falls outside the domain of the uniqueness theorem 
and nontrivial solutions can be found. A general procedure 
for finding such solutions was outlined by Freund (1990) and 
the steps for the problem at hand are outlined in the next 
section. 

3 Radiation for Plane Strain Deformation 
Guided by the results of the preceding section, the task here 

is to obtain a solution of the equations of elastodynamics 
representing outgoing radiation in a body with a traction-free 
half plane crack under plane strain conditions. A right-handed 
rectangular xyz-coordinate system is introduced in the body, 
oriented so that the crack occupies the half plane y = 0, x < 
0 and the crack edge coincides with the z-axis. The material 
is initially at rest and stress free over -oo < x < oo, -oo < 
y < oo, and the crack faces y = ±0 , x < 0 are free of traction 
for all time -oo < / < oo. A solution is sought having the 
symmetry of a mode I crack-tip deformation field, so that only • 
the half plane y > 0 must be considered. 

The mathematical problem which leads to a solution with 
the properties outlined is now stated. The Helmholtz repre
sentation of the displacement vector in terms of the scalar 
dilatational potential 4> a n d the vector shear potential \p is 
adopted. For plane strain deformation that is independent of 
z, the vector potential \p has only one nonzero component; this 
component is in the z-direction and it is denoted by ^. Thus, 

two functions <j>(x, y, t) and \p(x, y, t) are sought that satisfy 
the wave equations in two space dimensions and time 

dx2 + dy2 ddt1'"' 
ajV 
dx2 

aV aV 
c2 dt2 = 0 (16) 

3 / da df ' dxi df 

in the half plane -oo < x < oo, 0 < y < oofor time in the 
range 0 < t < oo. The characteristic wave speeds in (16) are 
the dilatational wave speed cd = a~l and the shear wave speed 
cs — b~'. The wave functions satisfying (16) are subject to the 
boundary conditions that 

ayy(x,0,t)=0, 

oxy(x,0,t)=0, 

uy(x,0,t)=0, 

- o o < x < 0 , 

- o o < x < o o , 

0 < X < o o , 

(17) 

for all time, where stress and displacement components are 
interpreted in terms of their representations in terms of dis
placement potentials <j> and \p. The initial conditions that 

<M*J\0) = ^ (x,y,0) = Hx,y,0)^ (xj \0) = 0 
at at 

(18) 

for all points in the half plane ensure that the body is stress 
free and at rest until the crack face pressure is applied. 

If only solutions that result in stress components which vary 
inversely with the square root of distance r from the crack tip 
are admitted, then the uniqueness theorem of elastodynamics 
implies immediately that there are no nontrivial solutions. In 
the present instance, however, a very small hole of radius r = 
e is imagined to be introduced at the crack tip. Under these 
circumstances, stresses that have singularities stronger than 
inverse square root, which are normally rejected on physical 
grounds, can be admitted as representing the radiation field 
resulting from introduction of the hole. The spatial structure 
of the strongly singular field is dictated by the highest order 
spatial derivatives in the governing differential equations, so 
that this field is identical to that for a stationary crack under 
equilibrium conditions. If the tensile stress on the crack plane 
directly ahead of the crack tip has the form 

q(t) 
(19) 

for arbitrarily small r and some function of time q(t), then 
the angular variations of the stress and displacement com
ponents near the crack tip are1 

cos - 0 + 3 cos 
2 

q(t) 

V 2 

H 
? • 7 

3 sm - i 
2 

-3 sin - 1 
2 

V cos r 0 - 3 cos 
2 w 
q(t) 

V 1 / 2 

(8c—3)cos - 0 -cos - 0 — cos - 0 

( 9 - 8 » / ) s i n - 0 - s i n - 0 

(20) 

The boundary value problem must be solved in order to de
termine the radiation fields corresponding to this singular 
asymptotic result. 

Solution of the problem proceeds by application of a one
sided Laplace transform on time defined in (6), and then a 
two-sided Laplace transform on A:, to the governing differential 
equations and boundary conditions. It is noted that the bound
ary conditions (17) are defined only on half of the range of x. 

'The expression (20)2 differs in a numerical coefficient from the original result 
as given in Freund (1990) due to a misprint in that source. 
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Consequently, the two-sided Laplace transform cannot be ap
plied to these boundary conditions as they stand. To remedy 
the situation, the boundary conditions must be extended to 
apply on the full range of x. To this end, two unknown func
tions «_ (x, t) and <7+ (x, t) are introduced. The function w_ 
is defined to be the displacement of the crack face y = 0+ in 
the .y-direction for - oo < * < 0, 0 < / < oo, and to be 
identically zero for 0 < x < oo, 0 < t < oo. Likewise, a+ is 
defined to be the tensile stress in the ^-direction on the plane 
>| = 0 f o r 0 < A : < o o ; 0 < ? < o o . With these definitions, 
the boundary conditions can be rewritten as 

ayy(x,0+,t) = a+(x,t), 

axy(x,0+,t)=0, (21) 
uy(x,0+,t) = u.(x,t) 

for the full range - o o < x < o o , 0 < ? < o o . Obviously, the 
subscripts + and - are used at this point to indicate on which 
half of the x-axis a subscripted function is nonzero. The no
tation is carried over into the transformed domain, where it 
is found that the same subscript symbols are useful for des
ignating a particular half plane of analyticity. 

Next, the one-sided Laplace transform (6) is applied to the 
wave equations (16), in light of the initial conditions (18), and 
to the boundary conditions (21). Then, the two-sided Laplace 
transform defined by 

WUjf)=\ w(x,y,s)e-sixdx (22) 

is applied. The notation in (22), whereby an upper case symbol 
is used to denote the double transform of the function rep
resented by the corresponding lower case symbol, is adopted 
as a convention. In view of the wave propagation character 
of the anticipated solution, the two-sided transform is expected 
to converge in the strip - a < Re(f) < a of the complex f-
plane. 

Application of the Laplace transforms (6) and (22) to the 
differential equations in (16) yields linear second-order dif
ferential equations in y for *(£", y, s) and ^(f, y, s), involving 
f and * as parameters. For values of f in the common strip of 
analyticity, each equation has two independent solutions, one 
growing exponentially and one decaying exponentially as y — 
oo. The wave propagation nature of the fields precludes the 
possibility of exponential growth as y becomes large with - a 
< Re(£) < 0. Consequently, only the solutions decaying as y 
— oo are admitted, so that 

Ht,y,s)-
1 p(ne-say,n^,y,s)=-^Q(ne -s&y 

where 
a = a(J) = (fl2- f)u\ 0 = 0(0 = {b2- ?? 

(23) 

(24) 

The special form selected for the undetermined coefficients in 
(23) is based on the expectation that a value of 7 can be found 
so that P and Q will not depend on s. The functions a and 0 
in (24) are multiple valued functions of f in the complex f-
plane with branch points at f = ±a and f = ± b, respectively. 
The branch of the square root in a is chosen as the one yielding 
values of a with a positive real part at each interior point of 
the common strip. For future reference, the definition of a is 
extended to the entire f-plane. Branch cuts are introduced along 
a < IRe(f)l < °°, Irn(f) = 0 and the branch of a which is 
chosen is the one which has a positive real part everywhere in 
the cut plane except on the branch cuts. Likewise, (3 is defined 
for the entire f-plane cut along b < lRe(f)l < 00, Im(f) = 
0 and the branch with nonnegative real part is understood in 
(24). 

The Laplace transforms must also be applied to the boundary 
conditions (21). If the left side of each boundary condition is 

expressed in terms of the displacement potentials, then the 
transformed boundary conditions are 

lx[(b2-2f)P(t)+2tfQ(m = Z+(n, 

M[-2«fP(r) + (b2-2f)Q({)] = 0, 

where 

and 

[ -aP(f ) - fQ(f ) ] = l /-(r) (25) 

Ur(t)=sy iiy(x,0+ ,s)e~sixdx (26) 
J -ra 

10° /.OO 

3yy(x'fi,s)dx'e-sixdx. (27) 
0 Jx 

The special form of the last expression (27) is dictated by the 
presence of a nonintegrable singularity in ayy at x = 0. 

Application of the Wiener-Hopf technique hinges on knowl
edge of the asymptotic behavior of t/_ (£) or E+(J) as f becomes 
large. In the present instance, the behavior of t/_(f) can be 
found from a knowledge of the behavior of uy(x, 0, t) near 
x = 0. In order to find a solution that corresponds to the 
asymptotic solution (20) and that represents the sudden ap
pearance of a hole at the crack tip, this displacement com
ponent must have the asymptotic form 

Mxfi,t)-j^n (28) 

as x —• 0~ where A is a constant to be evaluated later. From 
(28) it follows that the Laplace transform of uy must have the 
asymptotic behavior 

uy(x,Q,s) — (29) 
s(-x)"e 

The Abelian theorem on asymptotic properties of Laplace 
transforms then requires that 

lim1 (-irx)i/2iiy(x,0,s)= lim (-s^)l/2s~yU_(f). (30) 
x - 0 f 00 

This relation requires that 7 = 3/2 and that 

U-W~ ( _ f ) i /2as f - (31) 

The result of substituting the transformed potentials (23) 
into the transformed boundary conditions is a system of three 
linear algebraic Eqs. (25) for the four unknown functions P(f), 
Q(f), E+(f). and £/_(f). The system of equations is valid for 
all values of f in the common strip. As was anticipated, the 
system of equations does not involve the parameter 5. If two 
of the equations are used to eliminate P and Q in favor of 2+ 
and £/_, then the remaining equation is 

E + ( 0 = - & ^ l / _ ( i - ) , (32) 
b1 «(f) 

which is valid in the common strip of analyticity - a < Re(f) 
< 0, where 

R(n=4Mmn+(b2-2?)2 (33) 

The function R is analytic everywhere in the complex plane 
except at the branch points f = ±a and f = ±b. For the 
branches of a and /3 that were selected above, R is single valued 

' in the f-plane cut along a < I Re(f) I < b, Im(f) = 0. The 
function R is usually called the Rayleigh wave function because 
the two real roots of R = 0, say f = ± c, are the inverse wave 
speeds of free-surface Rayleigh waves traveling in opposite 
directions, each with absolute speed cR = \/c. In terms of 
Poisson's ratio v, the ratio of c to b is given approximately by 

\ + v 
b 0.862+1.14? 

(34) 
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By following the factorization procedure of the Wiener-
Hopf technique (Freund, 1990), the functional Eq. (32) can 
be rewritten as 

/ ^ t / (f) 
F + ( f ) £ + ( f ) = - 2 ^ ( l - - j T ^ H f 05) 

bl F_U) 

where 

and 

F ± ( f ) = 
a ± ( f ) 

(C±ns±(n 
(36) 

S± (r)=exp|-^ J tan 
47 j

2V(7?
2-fl2)(62-7?

2 

(b2-2r,2)2 

dri 

(37) 

Each side of (35) is the analytic continuation of the other 
into its complementary half plane, so each side equals one and 
the same entire function. In view of (31), the entire function 
is the constant -2/^(1 - a2/b2)\fwA, according to Liouville's 
theorem. The value of this constant must ultimately be iden
tified with the size e of the hole introduced at the crack tip 
and the level of stress intensity acting at the instant the hole 
is introduced. This identification will be made after the particle 
velocity spike of fundamental interest is extracted from the 
solution. 

Once £+(£") and £/_(£) are found by means of the Wiener-
Hopf procedure, the coefficients P(f) and Q(f) in (23) are 
readily obtained by means of (25). Of primary interest here is 
the first of these functions, which corresponds to the first wave 
arrival at any field point. This function is found to be 

P(D = -
y/^A (b2-2?) 

b2 a+(n(c-ns-ay 
(38) 

With this coefficient in hand, the Laplace transform inversion 
integral for 0 can be written. The physical quantity of primary 
interest in the loading is the y-component of displacement d<K*, 
y, t)/dy. The displacement component can be determined from 

d0 
dy 

(x, 'y's)=h[ V^4 (b2-2?)a^) 
£sfrb2 (c-f)S_(f) 

e ^ - ^ d f (39) 

where <£ is the integration path within the strip of convergence. 
Making use of the Cagniard-de Hoop method one finds the 
desired path of integration in the complex f-plane to be defined 
by 

t ft2 \xn 

{±(r,d,t)= - - c o s f l i / ' H - t f 2 ] sine (40) 

where the positive root is taken. In Eq. (40) 

P-^^+y2 andtan0 = -
x 

where 0 < 6 < T. 
Inversion of the Laplace transform on time yields 

dy liri b i{ (b
2-2f+)a_g+) ar+ 

(c- f+ )S_(f+ ) dt 

(b2-2t)a^_)d^ 
( c - f _ ) 5 _ ( f _ ) dt 

dr 
(41) 

This integral can be evaluated as a function of t in the range 
ar < t < oo. Of particular interest is the behavior in the 
immediate vicinity of the wavefront r = at = t/ca. To inves
tigate this question, the integral is considered in the limit as 
t/r — a*. Consequently, the integral can be replaced by 

dy 
(r,0,t)=A 

Vasinfl (b2-2a2cos26) 

(42) 

without affecting the value of the limit as t/r — a+. Then, a 
change of variable in the remaining integral from r to i\ = r / 
r leads immediately to the conclusion that the limiting value 
of the integral is ir\/a/2r, so that the displacement increment, 
at any location (r, 6), resulting from the instantaneous for
mation of a cylindrical cavity at the crack tip is 

Auy(r,6)=A 
asmd (b2-2a2cos26) (l+cosfl)' /2 

•s/2rb2 (c + acosd) S-(-acosd)' 
(43) 

The remaining task is to determine A, the strength of the 
strongly singular crack-tip field, in terms of the stress intensity 
factor of the crack-tip field generated by the plane wave load
ing. Three different approaches that have been used to estimate 
A are discussed as follows. 

Estimate 1. For the experiment described in the Introduc
tion, the loading was in the form of a plane step pulse normally 
incident on the crack plane. If a* is the tensile stress magnitude 
carried by the incident wave, and if the time elapsed since this 
wave arrived at the crack plane is t, then the stress intensity 
factor at the crack tip is 

KAt)=2a t yjcdt(\-2v)/v 
(44) 

(\-v) 
The loading generates an inverse square root singular crack-
tip field, growing in strength as the square root of time. At a 
certain instant of time, say /*, the crack initiates. The crack 
initiation event is understood to be associated with the abrupt 
formation of a very small hole of radius r = e centered at the 
crack tip, giving rise to a field with a singularity stronger than 
the inverse square-root singular field. The strength of this 
strongly singular field can be estimated by viewing the super
position of stress fields required to create a traction-free surface 
at radius r = e. However, unlike the case of antiplane strain, 
the distribution of the traction around the surface r = e is not 
the same for the r~xn and r~vi fields. Therefore, it is not 
possible to remove the tractions everywhere by superposition 
with a particular choice of A. The value for the strength A 
can be estimated by equating the stress component a*yy, cor
responding to the inverse square-root singular field, at a dis
tance r = e along 6 = ± -w/2 

# 
* 3 K' 

Oyy~--i= (45) 

to that of the same stress component in the strongly singular 
solution at the same point, which in view of (20) is 

5 A ix 
ayy~A^2(\-v)S<2' 

h(t). (46) 

Then, for / > 0, the value of A is found to be 

A=-(\-v)-j=-
5 V27T /« 

(47) 

Estimate 2. Consider again the normal, step wave loading 
of the crack plane resulting in an inverse square-root singular 
crack-tip field growing as the square root of time. The cor
responding elastic strain energy $(0, stored in a cylindrical 
region centered at the crack tip and occupying a volume V, 
can be evaluated using 

* ( 0 -W'WtV (48) 
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where a,y and ey are the stress and strain tensors, respectively. 
For the loading described, the integral (48) yields 

* * ( 0 •• ,li±ifcM^) (49) 

where e is the radius of the cylindrical region. Now, consider 
that at time t* the stress intensity factor reaches a critical level 
K* and the crack initiates, resulting in an abrupt formation 
of a cylindrical cavity of radius e, centered at the crack tip. 
The processes occurring within the region of radius e involve 
the dynamic coalescence of voids into a cavity. The major 
effect is to reduce the load carrying capacity of the material 
in the region. An energetic approach to relating this process 
to the waves that emanate from the tip is to assume that the 
elastic strain energy released from the square-root singular field 
as the cavity forms is equal to the energy input to the r~V2 

field that radiates from the crack tip. The elastic strain energy 
contained within the cylindrical volume is assumed to be re
lieved instantaneously and the input to the radiated field is 
assumed to be a step radial pressure acting on the boundary 
of the cylindrical cavity. By equating this released elastic strain 
energy to the work done by the radial pressure on the cylindrical 
boundary, the strength of the strongly singular solution can 
be estimated. The work done by the radial pressure is obtained 
by evaluating the integral 

,* + 

W= L-L'" vJLdt (50) 

where orr is the radial pressure and vr is the radial particle 
velocity corresponding to the strongly singular crack-tip field. 
The times /* ~ and t*+ represent the instants just before and 
just after the crack initiation time, /*. The symbol E represents 
the surface area of the cylindrical cavity over which the integral 
is evaluated. In view of (20) the integral (50) yields 

W-
liA1 

:64e 
7r(29-28y) 

d-") 2 (51) 

where n is the shear modulus of the material. Then, the value 
of A is found to be 

A=2(l-v)-
Kj e 2(5-8?) 

sfli n -\J 29-28?' 
(52) 

Estimate 3. In the third approach to estimate A, attention 
is again focused on a cylindrical region of radius e centered at 
the crack tip. The crack-tip stress field characterized by the 
dynamic stress intensity factor Kj(t) results in large elastic 
deformations in the region near the crack tip. The resulting 
expansion AKof the cylindrical region of volume Vis 

AV(t) -I ekkdV (53) 

where «** is the sum of the principal strains. The integral (53), 
when evaluated for the inverse square-root singular field, yields 

Airt 16 (1+ ?)(!-2v) KJWM 

2TT 
(54) 

Now, consider that at the instant of crack initiation (t = t*), 
the inverse square-root singular field transforms abruptly into 
a crack-tip field having a stronger singularity as described by 
(20). Since the more singular field is associated with the sudden 
loss of strength to form a very small hole at the crack tip, the 
unloading of the material enclosed in the cylindrical region of 
radius e results in a sudden contraction in volume. In view of 
(20), the integral (53) yields 

3 -E(l — v) 
(55) 

By requiring that the contraction in volume for the strongly 
singular crack-tip solution (55) to be the same as the expansion 
obtained for the inverse square-root singular field over the 
same cylindrical region (54), the strength of the strongly sin
gular crack-tip field can be obtained. For time t > 0, the value 
of A is found to be . 

V4 = 2 ( 1 - J 0 
K, 

2 T M 
(56) 

The three estimates for A given by (47), (52), and (56), 
(henceafter denoted by Au A2, and A3, respectively) are very 
similar. The values Au A2, and AT, satisfy 

A2 : A, : A% = 
2(5 - 8») 

1 
[ ( 2 9 - 2 8 K) 

and the inequality A2 < A^ < AT,. For v = 0.3, the estimate 
A2 is 0.509. In view of the closeness of the estimates, any one 
of the three could be used. For the comparisons in the next 
section the estimate A2 is used because of the slight preference 
for the energy argument which leads to this estimate. 

With the constant A determined, the magnitude of the dis
placement increment Auy, can be obtained from (43) in terms 
of the parameters of the plane wave loading. 

4 Experimental Results and Discussion 
A detailed description of the experiment, the experimental 

procedure and the results have been presented by Prakash and 
Clifton (1992). In this section, typical experiments for which 
good experimental records were obtained are summarized and 
the magnitude of the observed spikes in the surface velocity 
versus time profiles are correlated with those predicted for the 
plane strain deformation case. 

The material used for the study was AISI 4340 VAR steel. 
The material is heat treated by normalizing at 900° C for two 
hours, austenitizing at 850° C for two hours and then rapidly 
quenching in an ice-brine solution. The resulting Rockwell 
hardness Rc varied between 56.5 to 55.0 from the center of the 
disk to its circumference at a 200° C temper. The composition 
and various properties of this 4340 VAR steel are shown in 
Table 2. All experiments were conducted at room temperature 
(22° C). Table 3 gives the impact velocity V0, the applied 
pressure a*, the duration of the pulse t0 and the crack initiation 
time t* for the experiments discussed in this paper. The max
imum normal stress reached in the experiments corresponds 
to approximately 98 percent of the Hugoniot elastic limit. 
Figure 3 shows a typical scanning electron microscope picture 
of the fracture surface taken from the central region of the 
specimen after it was forced open in liquid nitrogen. Three 
distinct regions can be identified: (a) the prefatigued region, 
(b) the dynamic crack growth region, and (c) the region cor
responding to the fracture surfaces created when the specimen 
was forced open after the experiment. The arrow points to the 
region between the position of crack initiation and the crack 
arrest for the stress wave induced fracture. The crack growth 
is very uniform along the crack front. This supports the claim 
that fracture occurs under fully plane strain conditions in the 
central part of the specimen during the times of interest in the 
experiment. 

Figure 4 shows a typical fractograph of a region near the 
front of the prefatigued crack. Three different regions can be 
identified: (a) the prefatigued region, (b) the stretched zone, 
and (c) the crack growth region. The prefatigued region is 
easily identified as the appearance of the fracture surface in 
this region is very different from that of the surface formed 
by the high rate loading. Early crack growth is fully ductile, 
suggesting that the primary micromechanical mechanisms op
erative during the early growth process are void nucleation, 
growth, and subsequent coalescence. Between the prefatigued 
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Poisson 's ratio: v = 0.3

.42 .46 1.74.89 .21 .28 ,19 .03 1 .009 .001 .005 .001 1.0

Table 1 Physical properties of AISI 4340 VAR steel

Chemical Composition of 4340 VAR Steel

Fig. 4 Fractog raph of duc tile crack Ini tiati on along the crack front :
Shot 9005

o H ppmNsp

Republic Steel : Heat No. 3841687

(Weight %)

C Mn Ni Cr Mo Cu Si AI

Heat Treatment :
Normalize at 900' C for two hre.
Austentize at 850' C for two hrs .
followed by rapid quenching in ice brine solution
Temper at 200' C for two hrs , air cool.

Hard ness: 55-56 Rc

Mass Density: p = 7600 Kgm-3

Longitud inal wave speed: CL = 5.983 mml!'s

Shear Wave speed: Cs = 3.124 mm l !'s

Rayleigh wave speed: CR =2.987 mml!'s

Table 2 Summary of experiments on AISI 4340 VAR steel

SHOT # v, 0" t. t:

(mml !,' ee) MP" (/'see) (nsec)

8907 0.0854 1941 0.969 190.5
9004 0.1184 2690 1.029 575.0
9005 0.1200 2727 1.029 554.5

region and the crack growth region lies a relatively featureless
zone. This zone, designated as the plastic stretch zone has been
reported by many investigators (Spitzig 1968, 1969;Griffis and
Spretnak, 1970).This zone consists of coarse slip steps showing
the process of fatigue crack blunting by a slip mechanism. As
the plastic strain in the crack-tip region increases, the void
which was initiated at the inclusion nearest the crack tip, ex
pands under the combined influence of the local strain field
and the hydrostatic tension. Initiation is understood to occur
when the blunting crack tip first coalesces with the expanding
void. These mechanisms suggest that the onset of crack ini
tiation is not smooth, but corresponds to a sudden failure of
the ligaments, connecting the blunted crack tip to the growing
void. This leads to an abrupt formation of a small hole at the
crack tip . The radiated energy accompanying the abrupt for
mation of the hole is understood to be responsible for the
observed spike in the velocity-time profiles. Figure 5 shows a
magnified picture of a typical large void which was nucleated
at a large inclusion. This large void is surrounded by ligaments
which have undergone intense deformation. These ligaments
contain numerous small voids, commonly known as void sheets,
which nucleated at submicron carbide particles.

Figure 6 shows the velocity-time profiles of the rear surface
motion at the four monitoring points ahead of the crack tip
for shot 8907. The data shown corresponds to the time interval
of primary interest, i.e., after the first arrival of the diffracted
waves at the closest monitoring point, and before any un
loading waves arrive from the boundary. The time scale has
been normalized by C/H where C is the longitudinal wave
speed and H is one half thickness of the specimen. The velocity
scale has been normalized by the impact velocity which is 85.4
mls for this experiment. The closest monitoring point is placed
at 0.68 mm ahead of the crack tip. The remain ing three points
are spread at 0.48 mm intervals. The solid curves correspond
to the recorded velocity-time profiles at the four monitoring
points . The curves with the lowest (curve A) and the highest
(curve D) velocity time profiles correspond to the farthest

Fig. 5 Fractograph of a large Yold along with the Yold sheet: Shot 9005

(point A) and the closest (point D) monitoring points, respec
tively. The delay times between the traces correspond closely
to the difference in the arrival times of the waves diffracted
from the crack tip. The dashed curves correspond to the nu
merical simulation of the experiment using an elastic-visco
plastic model for the material, and assuming that the crack
remains stationary (Prakash and Clifton, 1992). Agreement
between the computed and experimentally obtained velocity
time profile is excellent up to a certain time. Thereafter, the
experimental and computed profiles separate. The separation
point is followed immediately by a jump in particle velocity
in all four traces. This separation point is understood to cor
respond to the instant of crack initiation which coincides with
the time of rapid formation of a small hole at the crack tip.
After this time the separation between the experimental and
computed traces grows. This part of the record corresponds
to the crack propagation phase of the experiment.

Figures 7 and 8 show the velocity-time profiles of the rear
surface at two monitoring points for shot 9004 and shot 9005,
respectively. Unlike shot 8907, the velocity-time profile was
monitored at only two points ahead of the prefatigued crack
front. For shot 9004, the first and the second points were
located 2.68 mm and 4.44 mm, respectively. For shot 9005,
the first and the second points were located at 5.88 mm and
6.84 mm, respectively. As before , the solid curves correspond
to the experimentally obtained pro files while the dashed curves
correspond to the computed profiles. Again, the experimental
and the computed curves agree well until the crack initiation

Journal of Applied Mechanics JUNE 1992, Vol. 59/363

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



o 
> 

CD 

> 

0 
N 

15 
£ 

0.0 

I M P A C T FACE 

|HEAR FACE 

COMPUTED FOR STATIONARY CRACK 
( ELASTIC-VISCOPLASTIC ) 
EXPERIMENTAL ( SHOT-8907 ) 

0 0.2 0.4 0.6 0.8 

Normalized Time (T*C/H) 
Fig. 6 Experimental and predicted (stationary crack) velocity time pro
files at the four monitoring points: Shot 8907 

o > 

o _o 
> 
T3 
CD 

0.20-

0.15-

0.10-

0.05-

o.oo-

COMPUTED FOR STATIONARY TRACK 
( Elastic-Viscoplastic ) : 
FXPFRIMFNTAI ( Qhr,t-Qnn4 ) j 

jp\fa\ IMPACT VELOCITY 118.4 tn/secj 

/ ^lA 'i 

I ' > A 

r^i 
-v B ^SJ 

\ i 
y 

\jy 
' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' - 1 - ' • •— 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.( 

Normalized Time (t*C/H) 

Fig. 7 Experimental and predicted (stationary crack) velocity time pro
files at the monitoring points: Shot 9004 

o 
> 

/A
) 

> +-» 
o 
o 
<1> 

> 
N 

(D 

r-
o 
^. 

0.30^ 

0.25-

0.20 : 

0.15-

0.10-

0.05 : 

COMPUTED FOR STATIC 
( Elastic-Viscoplastic ) 

)NARY CRACK 

FXPFRIMFNTAI ( Rhnt-Sfinfi ) 

IMPACT VELOCITY 120.0 m/sec 

A ^ 

« 
fl 

f 

B J • 

; 
1 ' 
/''< 

'-.•^^ ^ ^ 5 / / l 
1 i ' i ' i • i 1 1 

0.2 0.4 0.6 0.8 1 
Normalized Time (t*C/H) 

1.2 1.4 

Fig. 8 Experimental and predicted (stationary crack) velocity time pro
files at the monitoring points: Shot 9005 

time, after which the experimental profiles show a spike which 
is interpreted as corresponding to the abrupt formation of a 
hole. At Point A, for shot 9004, the experimental data was 
lost after the first 400 nanoseconds due to poor fringe contrast. 

Quantitative results for the radiated fields predicted by the 
strongly singular solution (43) can be compared with the mag
nitude of the spikes observed in the velocity-time profiles. The 
magnitude of the spike, and hence the displacement increment 
at a particular point on the specimen surface, is obtained by 
evaluating the area enclosed by the spike. The strength of the 
strongly singular solution, used in obtaining the quantitative 
displacement increment is taken to be given by Eq. (52), which 
is the result obtained from Estimate 2. Note that the quanti
tative results for the displacement increment, at any location 
(r, 6), are based on an analysis carried out for a step tensile 
pulse loading of a semi-infinite crack in an infinite medium. 
On the other hand, the experimental results were obtained by 
measuring the particle velocity on the free surface of the spec
imen. Hence, the predicted magnitude of the displacement 
increment has to be multiplied by a factor of two to have a 
proper comparison between the analytical and the experimental 
results. The parameter e, which has been associated with the 
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Fig. 9 Experimental and quantitatively predicted magnitudes of the 
displacement increment in the spikes of the velocity time profiles. The 
quantitatively predicted magnitudes are based on the estimation of the 
strength of the strongly singular solution obtained by Estimate 2. 
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radius of the very small hole formed at the crack tip, and hence 
characterizes the strength of the strongly singular solution, is 
taken to be 30 /xm. This distance is equal to one half the 
interparticle spacing of the large inclusions characteristic of 
the present material. Figure 9 compares the predicted mag
nitude of the displacement increment with that obtained ex
perimentally. The magnitude of the displacement increment, 
at any point x on the surface of the specimen, is normalized 

with respect to the factor cVii -y t*Cd/r where a*, /*, it, cd 
are the same as defined before and r is the radial distance from 
the crack tip to the monitoring point on the surface of the 
specimen. The abscissa, which represents the distance on the 
specimen surface from the point x = 0, is normalized with 
respect to the half thickness of the specimen, H. The predicted 
and experimentally obtained magnitudes of the displacement 
increment are in quite good agreement for shot 9004 and shot 
9005. For the case of shot 8907, the experimental values at the 
monitoring points C and D are lower than those predicted 
theoretically by the present analysis, but still are of the same 
order of magnitude. 
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Elastodynamic Analysis of a 
Periodic Array of lode 111 Cracks 
in Transversely Isotropic Solids 
Time-harmonic elastodynamic analysis is presented for a periodic array ofcollinear 
mode III cracks in an infinite transversely isotropic solid. The scattering problem 
by a single antiplane crack is first formulated, and the scattered displacement field 
is expressed as Fourier integrals containing the crack opening displacement. By using 
this representation formula and by considering the periodicity conditions in the crack 
spacing, a boundary integral equation is obtained for the crack opening displacement 
of a reference crack. The boundary integral equation is solved numerically by ex
panding the crack opening displacement into a series of Chebyshev polynomials. 
Numerical results are given to show the effects of the crack spacing, the wave 
frequency, the angle of incidence, and the anisotropy parameter on the elastodynamic 
stress intensity factors. 

1 Introduction 
The dynamic behavior of fiber-reinforced and laminated 

composites can be significantly affected by the presence of 
cracks. Thus, elastodynamic analysis of cracks in such ma
terials is a subject of considerable interest. Since fiber-rein
forced and laminated composites generally have a macroscopic 
transverse isotropy, a cracked composite material can be ap
proximated by a cracked homogeneous, transversely isotropic, 
and linearly elastic solid under certain restrictions. This ap
proach is a promising method, and it can substantially simplify 
the corresponding crack analysis. Time-harmonic elasto
dynamic analysis of an isolated crack in an infinite transversely 
isotropic medium has been performed by Ohyoshi (1973) for 
incident SH waves and by Dhawan (1982, 1983) for incident 
P and SV waves. A penny-shaped crack subjected to a time-
harmonic longitudinal and transverse wave loading has been 
investigated by Tsai (1988,1989). Diffraction of time-harmonic 
SH waves by an oblique crack in an orthotropic half-space has 
been considered by Lobanov and Novichkov (1981), while the 
diffraction of time-harmonic longitudinal and transverse waves 
by a semi-infinite crack in a transversly isotropic material has 
been studied by Norris and Achenbach (1984). Transient elas
todynamic analysis of an isolated mode I and mode II crack 
has been presented by Kassir and Bandyopadhyay (1988) for 
an infinite orthotropic solid, by Shindo et al. (1986), and by 
Ang (1987) for a transversely isotropic strip. The mode I dy
namic stress intensity factor for a crack in a transversely is-
tropic layered material under the action of impact loading has 
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been given by Ang (1988). The problem of a steadily moving 
crack in an orthotropic medium has been solved by Kassir and 
Tse (1983) and Piva (1986, 1987) for a state of plane strain, 
and by Danyluk and Singh (1984) for a state of antiplane strain. 

In this paper, the scattering of plane time-harmonic SH 
waves by a periodic array of Mode III cracks in an infinite, 
homogeneous, transversely isotropic, and linearly elastic solid 
is investigated. The scattering problem by a single Mode III 
crack is first formulated, and the scattered displacement field 
is expressed as Fourier integrals containing the crack opening 
displacement. By using this representation formula for the 
scattered displacement and by considering the periodicity con
ditions in the crack spacing, a boundary integral equation is 
obtained for the crack opening displacement of a reference 
crack. Expanding the crack opening displacement into a series 
of Chebyshev polynomials, the boundary integral equation is 
converted to an infinite system of linear algebraic equations 
for the expansion coefficients which are related to the elas
todynamic stress intensity factors by a simple relation. Nu
merical results for the elastodynamic stress intensity factors 
are presented as functions of the crack spacing, the dimen-
sionless wave number, and the angle of incidence of the incident 
wave, as well as the anisotropy parameter. 

Previous studies similar to this paper, but for a periodic 
array of cracks in isotropic materials, have been presented by 
Angel and Achenbach (1985a, b) and Mikata and Achenbach 
(1989) for incident P and SV waves, and by Achenbach and 
Li (1986) for incident SH waves. 

2 Scattering by a Single Crack 
Consider first a homogeneous, transversely isotropic and 

linearly elastic solid containing a single crack as shown in Fig. 
1. The length of the crack is 2a, and the crack is subjected to 
an antiplane loading produced by an incident plane, time-
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A1 

+a 

Fig. 1 An Isolated crack 

harmonic SH wave. Thus, the only remaining displacement 
component is in the ^-direction, which satisfies the following 
reduced wave equation 

C55w,n + Cuw, 22 + pu2w = 0, (1) 

where C44 and C55 are the elastic constants, p is the mass density, 
and w is the angular frequency. In Eq. (1) and in what follows, 
a comma after a quantity stands for partial derivatives with 
respect to spatial variables, the time factor exp(-zW) is sup
pressed, and the conventional summation rule over double 
indices is applied. The stress components are defined by 

ff31 = C55W,i, (2) 

032=C44W,2. (3) 

On the crack line (*2 = 0), the continuity conditions are 

ff32<*i, 0 + ) = ( i32(x„ 0 - ) , (4) 

w(xlt 0+) = w(xi, 0"), \x{\>a. (5) 

The interaction of an incident wave with the crack generates 
scattered waves. Thus, the total wave field can be written as 
a sum of the incident field and the scattered field 

w = W" + vfc, o3a = o&+ofa, (6) 

where W" and o^ represent the incident wave field in the 
absence of the crack, while v/c and afa represent the scattered 
wave field induced by the interaction of the incident wave with 
the crack. For a given incident wave field, the scattered field 
has to be determined so that the equation of motion (1), the 
continuity conditions (4) and (5), and the radiation conditions 
at infinity are satisfied. The scattered displacement field can 
be expressed as the following Fourier integrals 

w*(x)--
fi(t)ex-P(i&l-yx2)dZ, *2>0, 

f2(Z)exptexi + yx2)dt, x2<0, 

in which/1 and / 2 are yet unknown functions, and 

y= 
[C i 1 C 3 J ( { 2 - * f ) ] 1 

where 

-i[CulC5i(k\-e)]"\ ¥<k\, 

£ I = ( P / C 5 5 ) 1 / 2 C O . 

(7) 

(8) 

(9) 

The radiation conditions for the scattered field are ensured 
by the condition (8). In terms of the scattered field, the con
tinuity conditions (4) and (5) can be rewritten as 

a S ( * i , 0 + ) = of2(x,,0-), 

wsc(xu0
+) = wsc{xi, 0"), l* i l>a . 

The traction-free condition on the crack results in 

032=-A, *2 = 0, I * , ! < « . 

Substitution of Eq. (7) into Eq. (3) and subsequent use of 

the continuity condition (10) yield 

fi= -A- (13) 

(10) 

(11) 

(12) 

Fig. 2 A periodic array of collinear cracks 

Using Eq. (13), Eqs. (7) and (11) will lead to 

/ i t t J e x p O t a ) ^ 
0, l*i I >a, 

(14) 
lAw(xi), 1*11 <a , 

where Aw denotes the crack opening displacement defined by 

Aw{xx) = wsc(xu 0+)-wsc(xu 0). (15) 

Inversion of the integral (14) yields the following expression 
fo r / , « ) 

1 r 
/ i ( £ ) = 7 - J exp(-i^Xi)Aw(xi)dxi. (16) 

By using Eq. (13), the function /2(£) can be expressed as 

y 2 ( € ) = _ _ L j e X p(- /£*, ) Aw (xi)tfx,. (17) 

Thus, the scattered displacement field can be written as 

± f f 
4ir J_„ J_ 

exp[/'£(*i -Xi) 

wsc(x')=< 
-yx2]Aw(Xx)d£dx{> *2>0 , 

4TT J_ „ J_ 

(18) 

exp[/?(*! -xi) 

+ yx2]Aw(xl)d£dxl, x2<0, 

where x ' denotes the position vector of the observation point 
and x denotes the position vector of the source point. 

The representation formula (18) for the scattered displace
ment field by a single crack will be used in the next section to 
analyze a periodic array of cracks. 

3 Boundary Integral Equation for Periodic Collinear 
Mode III Cracks 

Consider now a periodic array of collinear mode III cracks 
as shown in Fig. 2. It is assumed here that all cracks have the 
same length 2a, and the distance between the centers of the 
two neighboring cracks is d. In this case, the scattered dis
placement field can be written in the following forms 

2 exp[/£(*i '-*i-./«0 

wJC(x') = < 

47T 

-yx^Aw'ix^d^dxi, x2>0, 

- i E J 1 «PK<*I-* 
(19) 

-xi-jd) 

+ yx2]AwJ(Xl)d%dxl, x2<0, 

where AW(Xi) is the crack opening displacement of the y'th 
crack, and x denotes the local coordinate system of the y'th 
crack which is related to the global coordinate system by 

iVYi 1*11 <« . (20) 

For a plane time-harmonic elastic SH wave incident under 
an angle 6, the displacement field has the form 
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w'"(xu x2) =ylexp[/'^(sintoi + costo2)], (21) 

where A is the amplitude of the incident wave, and k is defined 
by 

k = ki / (sin20 + C44C55' cos20)'' (22) 

By substituting Eq. (21) into Eq. (3) and by using the relation 
(20), the incident stress field on the cracks can be written as 

3̂2 (*i, 0) = d'3"2exp(iksindjd), (23) 

where a'"2 is the incident stress component on the reference 
crack (lx] I <a, x2 = 0) 

3̂2 (xi) = iA Cukcos6exp(iksm6xi). (24) 

Since the spacing of the cracks is periodic in the x rdirection 
and based on the Bloch (1928) theory for wave propagation 
in a periodic media, a Bloch-type ansatz is used for the crack 
opening displacement 

AvW(xO =Aw(xl)exp(iksin6jd), (25) 

in which Aw(ij) is the crack opening displacement of the 
reference crack (Ixi I < a, x2 = 0). Substituting Eq. (25) into Eq. 
(19) and using the relation 

Co 00 

J]exp[i(ksm8-£)jd] = J] &ld(ksm0-$)/(2ir)-j], (26) 
y ' = - o o y = - o o 

the following expression is obtained 

wsc(x') = 

1 nd f CO nCO 

4̂  J X ] exPte(x'i-xi-Jd)-yxi]x 

S[cHksme-^)/(2ir)-J]dnAw{Xi)dxu x2>0, 

1 f C °° r™ 
~T~ 2 expVHxi -Xi-jd)+yx2]X 

4 7 r J - « ( . . / = - c o J - < = ° 

8[d(ksmO-Z)/(2ie)-j\dnAw(.Xi)dxu x2<0, 

where 5[«] is the delta function. By using the sifting property 
of the delta function, Eq. (27) can be simplified to 

~ 1 nQ CO 

^ J 2 exp[iaj(x'i-xi-jd) 

ws c(x ')=H 

2d 

in which 

yj= 

-yjX2]Aw(Xi)dXi, x2>0, 

1 nO 00 

~2~d\ S expl ia /^^ i -^ -ycf ) 
— a j = „ 00 

+ 7j^2 ']Aw(Xi)^i, x 2 '<0 , 

a,- = Arsinfl + 2irj/d, 

[C^Ci5(a
2j-k\)f2, 

-HC^C^kl-a])] 

(28) 

a2>fc2 

2, a,2<A:2. 

(29) 

(30) 

Equation (28) implies that the scattered field can be expressed 
in terms of the crack opening displacement Aw of the reference 
crack. Hence, Aw can serve as a fundamental unknown quan
tity. By substituting Eq. (28) into Eq. (3), by letting the ob
servation point x ' approaching the faces of the reference crack 
and by considering the boundary condition (12), the following 
boundary integral equation is obtained for the crack opening 
displacement Aw 

2^ J ^yjexp[iaj(xi-Xi)]Aw(Xi)dxl = af2(x'i) (31) 
~ 0 j = — co 

where o™2 is given by Eq. (24). 

4 Numerical Solution of the Boundary Integral Equa
tion 

To solve the boundary integral equation (31), the unknown 
function Aw is expanded into a series of the form 

00 

Aw{X\)=(cf--x\)U2YiCmUm-dxl/a), (32) 

where Cm are the unknown complex expansion coefficients and 
Um-\ are the Chebyshev polynomials of the second kind. The 
proper behavior of Aw(;q) at crack tips is considered in Eq. 
(32) by including the term (a2 - x2)1'2. 

Substituting Eq. (32) into Eq. (31) using the relation 

f (1-x2) mUm.i (x)exp(iax)dx 

mv T . . f.m-l \ 
= /m(a)exp I / —j— it I (33) 

and performing the integration over [-a, a] with respect to 
Xi, multiplying both sides by (a2 - x])1/2Un-l(xl/a), and in
tegrating again over [-a, a] with respect to xt, an infinite 
system of linear algebraic equations for Cm is obtained as 

/ 1 A mtv^ m ~~ &m (34) 

where the matrix coefficients Amn and the right-hand side B„ 
are given by 

00 

(2?) Am„ = mn 2 -^Jm(aja)J„(aja)expl3i(m + n)Tr/2], (35) 

5„ = 2(-!)"<&• 
nd 

J„(kas'm6)exp[i(n- l)7r/2], (36) 
TrCwkasind 

in which 

o°32 = iACi4kcos6. (37) 

In Eqs. (33), (35), and (38), Jm(a) is the Bessel function of wth 
order. 

5 Dynamic Stress Intensity Factors 
The mode III dynamic stress intensity factors are related to 

the crack opening displacement by 

Kt 
(27T)1' 

(C44C55)1/2lim 
1 

Aw(x,), (38) 

where " ± " indicates the crack tips at xx = a and Xi= -a. 
Substituting Eq. (32) into Eq. (38) and using the identity 

£/m_1(d=l) = m ( ± i r " 1 , (39) 
a simple relation between the dynamic stress intensity factors 
and the expansion coefficients is obtained as 

Km — 
(TO) 1 

( C 4 4 C 5 5 ) 1 / 2 2 c r a w ( ± l ) " (40) 

Once the coefficients Cm have been computed from Eq. (34), 
the mode III dynamic stress intensity factors can be calculated 
by using Eq. (40). 

6 Discussion of Numerical Results 
The geometrical and the material parameters to be specified 

for the numerical calculations are: the normalized crack dis
tance d/a, the dimensionless wave number kxa, the angle of 
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incidence 6, and the anisotropy parameter (ratio of the elastic 
constants) /3 = C44/C55. For convenience, the normalized dy
namic stress intensity factors 

Kfn=\Kfn\/\K°ln\ (41) 

are introduced, where 

KJn=iAC^k(ira)' (42) 

To compute the matrix coefficients Amn and the dynamic 
stress intensity factors, the infinite series (35) and (40) have to 
be truncated. Generally, the truncations needed depend on the 
crack spacing, the wave frequency, the angle of incidence, and 
the anisotropy parameter. By using the asymptotics of the 
Bessel function, it can be easily shown that the series (35) 
behaves as l/(a/fl)2 for (a/a) — 00. Considering Eq. (29) it is 
seen that the number of terms to be summed in (35) depends 
mainly on the crack spacing parameter d/a. Numerical tests 
show that for ensuring the accuracy of Amn it is enough to 
takeyraax = -jm[n = 300 for 2.0<cf/«<5.0 andymax = - jmia 
= 1000 for d/a = 20. To keep the error in the dynamic stress 
intensity factors smaller than three percent, it is sufficient to 
take mmax in Eq. (40) slightly larger than twice the dimensionless 
wave number k\a. 

For normally incident plane time-harmonic SH-waves (0 = 
0 deg), the normalized dynamic stress intensity factors are 
shown in Fig. 3 as functions of the dimensionless wave number 
k{a. In this case, both crack tips possess the same stress intensity 
factors, i.e., K^, = KJU, due to symmetry of the problem. 
Figure 3 indicates that for large values of the crack distance 
d/a = 5 and d/a = 20, the maximum dynamic stress intensity 
factors exceed their corresponding static values at kxa = 0. In 
both cases, the dynamic stress intensity factors increase first 
with increasing k\a, and after reaching their maximum they 
then decrease with further increasing k\a. For a small value 
of d/a = 2.5, the dynamic stress intensity factors decrease 
monotonically with increasing dimensionless wave number kxa, 
at least in the frequency range that is considered. It is note
worthy that for d/a = 5, a sharp peak in the stress intensity 
factors is noted. In the case of d/a = 20, the crack spacing 
is sufficiently large for neglecting the interactions between 
individual cracks, and the corresponding dynamic stress in
tensity factors approach that for a single crack (Ohyoshi, 1973, 
Zhang and Gross, 1992) as shown in Fig. 3. This provides us 
with a check on the accuracy of the numerical method presented 
here. It is interesting to note that for normal incidence of plane, 
time-harmonic SH-waves, the dependence of Kfn on k\a is 
valid for arbitrary anisotropy parameter 13. This allows us to 
make another comparison of the numerical results of this paper 
with those obtained by Zhang (1990) for a periodic array of 
cracks in an isotropic solid, i.e., fi = 1. As can be seen from 
Fig. 3, an excellent agreement between both results has been 
obtained. It should be noted here that the method is not limited 
to low to moderate frequencies, and it also works well for 
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relatively high frequencies. Of course, the number of terms to 
be summed in Eq. (40) has to be increased in the latter case, 
but this brings no difficulties. 

For plane time-harmonic SH-waves incident obliquely under 
8 = 30 deg, 45 deg, and 60 deg, and for three anisotropy 
parameters /3 = 0.5, 1.0 and 1.5, the corresponding dynamic 
stress intensity factors are presented in Figs. 4-6 versus k\Ct. 
Here, the dimensionless crack distance d/a is chosen as d/a 
= 5. In all three cases, the variation of the dynamic stress 
intensity factors with the dimensionless wave number kxa is 
very similar. Both the Kf,rfactor and the ^/-factor have the 
same values at low frequencies, and they separate at high 
frequencies whereby Kfn > Kjn. This indicates that for the 
case considered, the right crack tips are more dangerous than 
the left crack tips. Also here, the maximum dynamic stress 
intensity factors exceed their corresponding static values. Fur
thermore, an oscillatory behavior in the dynamic stress inten
sity factors is noted at high frequencies. The effect of the 
material anisotropy on the dynamic stress intensity factors is 
negligible at low frequencies while it becomes distinct at high 
frequencies. 

Figure 7 shows the dependence of the normalized dynamic 
stress intensity factors on the normalized crack distance d/a, 
for normally incident (0 = 0 deg) plane time-harmonic SH-
waves, and for several dimensionless wave numbers kxa. Also 
here, the results are valid for arbitrary anisotropy parameter 
/3. In the low frequency range, for instance for k\a = 0.1 and 
kxa = 0.5, the dynamic stress intensity factors are considerably 
large when the distance between neighboring cracks is small, 
and they decrease monotonically with increasing crack distance 
d/a. This means that the smaller the separation between neigh
boring cracks, the larger are the stress concentrations near the 
crack tips. The amplification in the stress intensities is reduced 
when the frequency of the incident wave is high, and the de

pendence of the dynamic stress intensity factors on the crack 
distance d/a becomes much more complicated. The dynamic 
stress intensity factors for kxa = 1, 2, and 3 could be for 
example smaller at smaller values of d/a than that at larger 
values of d/a. These results show that dynamic effects can 
significantly alter the dependence of the dynamic stress inten
sity factors on the crack distance d/a. Only in the low frequency 
range, this dependence agrees qualitatively with that of the 
static analysis. For intermediate and high frequencies, this 
dependence could be, however, opposite to that in the static 
case. 

Figures 8 and 9 show the dependence of the normalized 
dynamic stress intensity factors on the angle of incidence 8, 
for d/a = 5, kya = 1.0 and 2.0, and for j3 = 0.5, 1.0, and 
1.5. In the case of kxa =1 .0 the normalized dynamic stress 
intensity factors Kf„ first increase slightly with increasing 8, 
and after reaching their maximum they then decrease with 
further increasing 8. The influence_of /? on Kfu in this case is 
small for large 6. The variation of Kfn with 8 becomes intricate 
for kya = 2.0. The special case 8 = 0 deg corresponds to 
normal incidence which has been discussed before in detail. 
In another special case of 8 = 90 deg, the incident wave pro
duces no loadings on the faces of the cracks, and the dynamic 
stress intensity factors Kfn are therefore identical zero. 

Finally, the normalized dynamic stress intensity factors are 
presented in Figs. 10 and 11 versus the anisotropy parameter 
/3, for a plane time-harmonic SH-wave incident under 6 = 45 
deg, for d/a = 2.5, 3.0, and 4.0, and for kxa = J.O and 2.0. 
The normalized dynamic stress intensity factors Kfu decrease 
with increasing /3, except in the case of d/a = 3.0 and k\a = 
1.0 in which KJn increases as /3 increases. The dynamic stress 
intensity factors for kxa = 1.0 are generally larger than that 
for k\a = 2.0. Figures 10 and 11 show that both the crack 
spacing and the wave frequency have strong influences on the 
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Kfn - |3 curves. Depending on the crack spacing and on the 
wave frequency, the material anisotropy can either increase 
the dynamic stress intensity factors or decrease them. 
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Shear Constitutive Relations for 
Laminated Anisotropic Shells and 
Plates: Part I—Methodology 
Shear constitutive relations of a first-order shear deformation theory for laminated 
anisotropic shells and plates are formulated following Mindlin's procedure for ho
mogeneous isotropic plates. Because thickness-shear motions for laminated aniso
tropic thickness profiles may not be polarized in planes normal to the reference 
surface, the concept of generalized principal shear planes is needed. These planes 
are established by least-squares minimization of the out-of-plane motions of infinitely 
long thickness-shear waves based on an elasticity analysis of the profile. Typical 
shear rigidities for a variety of laminated composite and sandwich profiles are given. 
In a companion paper, the efficacy of this form of shear constitutive relations in 
predicting the response of a class of laminated composite and sandwich cylindrical 
shells is demonstrated. 

Introduction 
Classical (Kirchhoff-Love) plate and shell theory rests on 

the propriety of neglecting transverse shear deformation. The 
low shear moduli in typical laminated composite plates and 
shells enhance their susceptibility to shear. As a result, the 
range of validity of classical theory for a composite plate or 
shell suffers in comparison with that for a similarly shaped, 
homogeneous isotropic structure. For applications immedi
ately beyond this range, a refined theory incorporating shear 
deformation must be used. 

Many state-of-the-art surveys on shear deformation theories 
and applications of laminated composite plates and shells have 
appeared, the most recent ones are due to Noor and Burton 
(1989) and Kapania and Raciti (1989a, 1989b). Others include 
those by Bert (1979, 1984, 1985), Leissa (1981, 1987), and 
Reddy (1981, 1982, 1985). These reviews document the dif
ferent levels of approximation used in the assortment of lam
inated composite plate and shell theories. Even with this 
considerable attention, a need remains for a first-order shear 
deformation theory valid for an arbitrary stacking sequence 
and orientation of fiber directions, i.e., for laminated aniso
tropic plates and shells. Moreover, the accuracy of any pro
posed constitutive relation in a refined theory must be 
demonstrated. 
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Herein, our literature review is restricted to first-order shear 
deformation theories with attention on the shear correction 
factors in the transverse shear constitutive relations. These 
factors are the means by which to properly assess the shear 
rigidities in the structural range of application. Two methods 
are used to determine them: (1) by assumed stress distribution 
and applying complementary energy principle and (2) matching 
cutoff frequencies of thickness-shear motions with infinitely 
long wavelengths. Reissner (1945, 1947) and Mindlin (1951), 
respectively, are synonymous with these approaches for ho
mogeneous isotropic plates. Recall that their values of shear 
correction factor Ic in shear rigidity k2 GH (G = shear modulus, 
H= thickness) were 5/6 and TT2/12, respectively. 

One of the first shear deformation laminated composite plate 
theories is due to Yang, Norris, and Stavsky (1966). They 
obtained their governing equations by integrating the three-
dimensional elastodynamic equations over the plate thickness 
and introduced correction factors in an ad hoc manner. Whit
ney and Pagano (1970) presented a refined laminated aniso
tropic plate theory, but left open the issue of proper values 
for the shear correction factors. Later, Whitney (1972) gave 
correction factors for some laminated and sandwich plates 
using statical considerations. Reissner (1972, 1979) has also 
treated transverse shear effects in laminated anisotropic plates 
by extending his earlier approach for isotropic plates. Dong 

, and Tso (1972) presented constitutive equations for laminated 
orthotropic shells with the correction factors based on the 
fundamental thickness-shear cutoff frequencies in the two or
thogonal directions. Shear correction factors for other cross-
ply plates were given by Dong (1972). Chatterjee and Kulkarni 
(1979) offered a method for shear correction factors for lam
inated anisotropic plates with particular attention to the cross-
coupling shear term k\2 A4S. However, they did not fully ex
plained nor justified their method. 
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This paper is concerned with a methodology for constructing 
rational transverse shear constitutive relations for a first-order 
shear deformation theory for laminated anisotropic plate and 
shell theory suitable for an arbitrary stacking sequence and 
orientation of materials. The approach is an extension of that 
used by Dong and Tso (1972) for laminated orthotropic (gen
eral cross-ply) shells. For cross-ply constructions, two mutually 
orthogonal planes of polarized motions exist naturally, per
mitting a straightforward matching of the cutoff frequencies 
to deduce the shear correction factors. The difficulty with a 
completely arbitrary laminated thickness profile is that polar
ized thickness-shear motions generally will not occur in any 
plane normal to the reference surface. Herein, the concept of 
generalized polarized motions on two mutually orthogonal 
planes is introduced, and transverse shear constitutive relations 
are established in these principal directions. Numerical values 
of the shear correction factors for a variety of laminated com
posite and sandwich profiles are given to provide some insight. 
In a companion paper, the accuracy of these shear constitutive 
relations for predicting structural response of a class of lam
inated composite and sandwich cylindrical shells will be ad
dressed. 

Preliminaries 

Let ($!, £2> z) be orthogonal curvilinear coordinates with 
(£i> £2) a s the shell's reference surface coordinates and z as the 
transverse coordinate and let t denote time. According to the 
fundamental kinematic hypothesis in a first-order shear de
formation-theory, the shell displacements (Ux, U2, W) in the 
coordinate directions can be expressed in terms of three ref
erence surface displacements, (ux, u2, w) and two bending 
rotations (f}it /?2) as 

iUiiii, £2, z, D = «/<$!, £2, t)+zMki, £2, t), ( i = l , 2); 

^ ( £ 1 , £2, z, 0 = w ( £ „ £ 2 , / ) . (1) 

These five kinematic variables enter into strain-displacement 
relations defining eight deformation measures, which are 

to
 to

 

= 
T55 r 4 5 

r 4 5 T44 
7u 

_72z_ 
(5) 

where (r55, T^, r45) are the transverse shear rigidities. In a 
first-order shear deformation theory, the shear angles Y/Z's are 
generalized coordinates representing weighted average shear 
strains over the entire profile. Note the absence of shear cor
rection factors in Eq. (5) as they are implicitly taken to be part 
of the Ty's coefficients. 

Dong and Tso (1972) established shear constitutive relations 
for a laminated orthotropic shell (i.e., cross-ply constructions) 
by adaptation of Mindlin's approach. These relations were of 
the form: 

Qx 

Qi 

~r55 •-
T44 7i* 

_72Z_ 

/diA5 

tiiA* 
7l2 

722 

where 

(A55,A44)=\ (Q\l\Q^)dz 

(6)1 

(7) 

and (Arfi, A^) are shear correction factors. Observed that 
T45 = k\2A^ = 0 because A45 is indentically zero in this case. It 
was convenient to use the shear correction factors here, how
ever, the crucial issue concerns the estimation of T55 and T44, 
Each shear rigidity T,-, was found by equating the first-order 
shear deformation theory formula for the squared natural fre
quency of infinitely long thickness-shear waves in a plate with 
that determined by linear elasticity. The matchings in each of 
the two coordinate directions lead to the following equations 
where oof, cof are understood to be frequency data from linear 
elasticity. 

r„ = 
PxPi 

Px 

-P2 2 
-032 

PXP3 

Px 

„2 
-Pi 2 

«1 

grouped into three arrays, i.e., [e)7 '=[e11,622,712)], {K}T=[KIU
 w h e r e " " to, "3 a r e P l a t e o r s h e 1 1 m e r t l a s d e f m e d hr-

K22, K12], and ( 7 ) ' = [yu, 72z\- Their corresponding force and 
moment resultants are denoted by the arrays {N]T= [Nn, Ar

22, 
M2], [M}T= [M„, M22, Mn], [Q)T= [Qx, Qi], which are de
fined by integrals of the in-plane (an, a22, cl2) and transverse 
shear (olz, a2z) stresses over the thickness profile, i.e., 

(Px, P2, Pi) - I ' <*) (1 z, z2)dz. 

(8) 

(9) 

(W</, Qi) = \ (<*</> tffc)cfe 
Jh 

Mjj= \ Ojjzdz; {i,j=l, 2 ) . 

(2) 

The constitutive relations are conveniently cast in two parts. 
One part relates ( ( N ) , (M)) to ((e), [«)), i.e., the relation 
that shows the inherent extensional-flexural coupling in lam
inated composite profiles: 

(3) 

where the extensional, coupling, and flexural rigidities (Ay, 
B/j, Djj) in matrices [A], [B], and [D] are given by the integrals: 

M = 
A B 
B D 

e 

K 

(Aij,Bij,Dij)=\ Qf\\,z,e)dz (4) 

There are no conceptual difficulties here as the thickness-shear 
motions are naturally polarized in two mutually orthogonal 
planes as illustrated in Fig. 1(a) for a cross-ply plate rotated 
by 45 deg. 

For general laminated anisotropic profiles, inconsistencies 
arise. On one hand, elasticity results show that polarized mo
tions in two mutually orthogonal planes are not possible as 
seen by examples of a three-layer and an eleven-layer profile 
in Figs. 1(b) and 1(c). Yet, Eq. (5) admits a transformation 
to principal directions (i.e., rotation to two mutually orthog
onal directions that eliminates T45). To generalize Mindlin's 
approach in this case, assume the existence of two mutually 
orthogonal planes called generalized principal shear planes 
which act as the principal directions in a first-order shear 
deformation theory. Let r55, T44 be the two principal shear 
rigidities in the principal directions. Equation (8) holds in the 
principal directions upon replacing r,-,'s by the barred values, 

with Q\P'S as the reduced stiffnesses fcth layer. The second 
part pertains to the shear constitutive relations, which is the 
focus of our attention. 

i . e . , 

=; P 1 P 3 - P 2 2 
155 = o)2 

Px 

PxPi-Pi 2 
= C0lt 

Px 
(10) 

The two generalized principal planes are defined by a least-

Shear Constitutive Relations 

The shear constitutive relation in a first-order shear defor
mation theory for laminated anisotropic shells or plates is of 
the form 

'The subscripts 55, 44 are reversed from those in Dong and Tso (1972). Here, 
they adhere to contracted notation convention where shear subscripts 1, 3 and 
2, 3 are denoted by 5 and 4, respectively. 
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Fig. 1 Infinitely long, thickness-shear motions and generalized prin
cipal planes 

shear waves. This procedure is described in a subsequent sec
tion. Once r55 and T^, and the principal directions are known, 
then r55 , T44, r4 5 in the coordinate directions may be obtained 
by a two-dimensional transformation, i.e., 

(ID & 
r5 5 
T44 

r45 

cos20 
sin20 

cos0sin0 

sin20 
cos20 

— cos0sin0 

£55" 
T44 

In Eqs. (10) and (11), adopt the convention that T^rS^s and 
o>2 ^ w2 and let 8 be the angle from the x-axis to the direction 
of r55 as illustrated by 6{ in Fig. 2._Observe that significant 
values of r45 can only occur when r5 5 is quite distinct from 

r44 . 

Elastodynamic Analysis of Infinitely Long Thickness-
Shear Motions 

The frequencies for infinitely long thickness-shear waves in 
a plate based on linear elastodynamics are determined by finite 

squares minimization of the out-of-plane displacements of the element analysis. The governing equations are predicated on 
two fundamental natural motions of infinitely long thickness- Hamilton's principle in the form: 

0, -angle between x-axis and ^generalized principal plane. 

82 -angle between x-axis and fiber direction. 

Fig. 2 Orientation of ply-angle and generalized principal planes 
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Table 1 Regular symmetric (±45 deg) angle-ply profile 

X 

0.1 

0.4 

0.9 

plies 

3 
5 
7 

9 
•11 

13 
15 

51 

3 
5 
7 
9 

11 
13 

51 

3 
5 
7 
9 

11 
13 

51 

r<t4 

0.12201 
0.14245 
0.14654 
0.14792 
0.14854 
0.14886 
0.14905 

0.14950 

0.42416 
0.46066 
0.46635 
0.46812 
0.46886 
0.46924 

0.46995 

0.77015 
0.77782 
0.77871 
0.77896 
0.77906 
0.77911 

0.77918 

Tss 

0.16758 
0.14953 
0.14900 
0.14906 

0.14915 
0.14923 
0.14929 

0.14951 

0.50813 
0.47297 
0.47051 
0.47002 
0.46989 
0.46986 

0.46996 

0.78802 
0.78038 
0.77957 
0.77935 
0.77927 
0.77923 

0.77918 

Pr. Angle 

-45.00 
-45.00 
-45.00 
-45.00 
-45.00 
-45.00 
^15.00 

-45.00 

-45.00 
-45.00 
-45.00 

-45.00 
-45.00 
-45.00 

-45.00 

-45.00 
-45.00 
-45.00 
-45.00 
-45.00 
-45.00 

-45.00 

A44 

0.70000 
0.64000 
0.61429 
0.60000 
0.59091 
0.58462 
0.58000 

0.55882 ' 

0.80000 
0.76000 
0.74286 

0.73333 
0.72727 
0.72308 

0.70588 

0.96667 
0.96000 
0.95714 
0.95556 
0.95455 
0.95385 

0.95098 

Ass 

0.40000 
0.46000 
0.48571 
0.50000 

0.50909 
0.51538 
0.52000 

0.54118 

0.60000 
0.64000 
0.65714 
0.66667 
0.67273 
0.67692 

0.69412 

0.93333 
0.94000 
0.94286 
0.94444 

0.94545 
0.94615 

0.94902 

EL 

0.174 
0.223 
0.239 
0.247 
0.251 
0.255 
0.257 

0.268 

0.530 
0.606 
0.628 

0.638 
0.645 
0.649 

0.666 

0.797 
0.810 
0.814 
0.815 
0.816 
0.817 

0.819 

E?, 

0.419 
0.325 
0.307 
0.298 
0.293 
0.290 
0.287 

0.276 

0.847 
0.739 
0.716 

0.705 
0.698 
0.694 

0.677 

0.844 
0.830 
0.827 
0.825 
0.824 
0.824 

0.821 

The A45 's are identically zero in all cases. 

Table 2 Regular antisymmetric (±45 deg) angle-ply profile 

X 

0.1 

0.4 

0.9 

plies 

2 
4 
6 
8 

10 
12 

50 

2 
4 

6 
8 

10 
12 

50 

2 
4 

50 

^55 = T.J4 

0.13100 
0.14329 
0.14706 
0.14819 
0.14869 
0.14896 

0.14951 

0.45040 
0.46424 
0.46779 
0.46881 
0.46924 
0.46948 

0.46995 

0.77864 
0.77903 

0.77918 

Ass = A44 

0.550 
0.550 
0.550 
0.550 
0.550 
0.550 

0.550 

0.700 
0.700 
0.700 
0.700 
0.700 
0.700 

0.700 

0.950 
0.950 

0.950 

v2 k2 

0.238 
0.261 
0.267 
0.269 
0.270 
0.271 

0.272 

0.643 
0.663 
0.668 
0.670 
0.670 
0.671 

0.671 

0.820 
0.820 

0.820 

The A^'s arc identically zero in all cases. 

6! ( M y * > ( " 2 + " 2 ) -Gi*)»«-2o4s*
)"««,: 

•QWv,$dz\dt- 0. (12) 

One-dimensional finite element modeling is employed using 
quadratic interpolations in the thickness direction with nodes 
of a given element at its top, mid, and bottom surfaces. The 
resulting algebraic eigenvalue problem incorporating time har
monic motion is of usual form, i.e., [K] {U) = co2[M] ( U). Only 
the lowest two antisymmetric or antisymmetric-like motions 
are of interest. Finite element analysis of waves with finite 
wavelengths in laminated anisotropic plates, of which the pres
ent application is a special case, was given by Dong and Pauley 
(1978). 

Determination of Generalized Principal Planes 
Let y = mx and y= -x/m be equations of two mutually 

orthogonal lines in a plate contained within the generalized 
principal shear planes and let i* and j * be unit vectors along 
these lines. These unit vectors can be expressed in terms of the 
unit vectors i and j of the rectangular cartesian coordinate 
system through the direction cosines. Let (Ui(z), Vi(z)) and 
(u2(z), v2(z)) denote the cartesian displacement components 
of the lowest two antisymmetric modal patterns, normalized 
such that the maximum amplitude of each is equal to unity. 
The out-of-plane displacements v*, v2 normal to the two prin
cipal planes can be expressed in terms of (it\(z), v^z)) and 
u2(z), v2{z)) and the direction cosines involving the slope m: 

t>*(z) = (Mi i+ i> iJH* = 
1 

\/m2+l -\/m2+l 
•Vi 

V2(z) = (U2\ + V2})'\* = :«2 + - m 

•\/m2+l \jm2+\ 
v2 (13) 

Thus, the integral of the squares of all out-of-plane displace
ments over the thickness profile can be viewed as the polari
zation error e2: 

(.vf)2+(vn2 

1 
m2+\ 

dz 

(A1+B2)m
2 + 2(C2-Ci)m+(Bl+A2) (14) 

where 

A= f (u,)2dz ; B,= \ (Vl) 

C,= \(u,)lv,)dz;(.i=l,2). (15) 
Jh 

Minimization of e2, i.e., de2/dm = 0, gives the following quad-
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Table 3 Regular symmetric (±30 deg) angle-ply profile 

X 

0.1 

0.4 

0.9 

plies 

3 
5 
7 

9 
11 

13 

15 

51 

3 
5 
7 
9 

11 

13 

51 

3 
5 
7 
9 

11 

51 

1̂ 44 

0.10200 

0.10511 
0.10564 
0.10584 
0.10594 
0.10599 

0.10603 

0.10612 

0.37943 
0.38560 
0.38638 
0.38666 
0.38679 

0.38686 

0.38703 

0.75773 
0.75912 

0.75917 
0.75918 
0.75919 

0.75920 

r5! 

0.23172 

0.23980 
0.24660 
0.24924 

0.25053 

0.25127 
0.25172 

0.25295 

0.59652 
0.59322 
0.59575 
0.59674 
0.59722 

0.59749 

0.59812 

0.80157 
0.80020 
0.80021 
0.80022 
0.80023 

0.80024 

Pr. Angle 

-12.13 
-1.67 
-0.53 
-0.24 
-0.13 

-0.08 
-0.05 

0.00 

-10.70 
- 1.57 
-0.52 

-0.24 

-0.13 
- 0.08 

0.00 

-10.35 
- 1.55 
-0.52 
-0.24 
-0.13 

0.00 

A„ 

0.39824 
0.32991 
0.32607 
0.32537 
0.32516 

0.32508 
0.32504 

0.32500 

0.59195 

0.55307 
0.55070 
0.55024 

0.55011 
0.55005 

0.55000 

0.93171 
0.92550 
0.92512 
0.92504 
0.92502 

0.92500 

A„ 

0.70176 
0.77009 
0.77393 
0.77463 
0.77484 

0.77492 

0.77496 

0.77500 

0.80805 
0.84693 
0.84930 
0.84976 
0.84989 

0.84995 

0.85000 

0.96829 
0.97450 
0.97488 
0.97496 
0.97498 

0.97500 

A45 

0.21088 
0.09089 
0.05984 
0.04517 
0.03642 

0.03057 
0.02637 

0.00765 

0.13537 
0.06010 
0.03983 
0.03010 
0.02428 

0.02038 

0.00510 

0.02234 

0.01000 
0.00664 

0.00502 
0.00405 

0.00085 

r2 

M2 

0.256 
0.319 
0.324 

0.325 
0.326 

0.326 
0.326 

0.327 

0.641 
0.697 
0.702 

0.703 
0.703 
0.703 

0.704 

0.813 
0.820 
0.821 
0.821 
0.821 

0.821 

k?i 

0.330 
0.311 
0.319 
0.322 

0.323 
0.324 

0.325 

0.326 

0.738 
0.700 
0.701 
0.702 
0.703 

0.703 

0.704 

0.828 
0.821 
0.821 
0.821 
0.821 

0.821 

Table 4 Regular antisymmetric (±30 deg) angle-ply profile 

X 

0.1 

0.4 

0.9 

plies 

2 
4 

6 
8 

10 
12 

50 

2 
4 
6 

8 
10 

50 

2 
4 
6 

50 

l\l4 

0.10102 
0.10448 
0.10546 

0.10576 
0.10590 
0.10597 

0.10612 

0.37927 
0.38472 
0.38613 
0.38655 
0.38674 

0.38703 

0.75883 
0.75910 
0.75916 

0.75920 

r5S 

0.18673 
0.22780 
0.24384 

0.24814 
0.24998 
0.25094 

0.25295 

0.56337 
0.58855 
0.59469 
0.59632 
0.59701 

0.59811 

0.79979 
0.80012 
0.80019 

0.80024 

Pr. Angle 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 

0.00 

A44 

0.32500 
0.32500 
0.32500 
0.32500 
0.32500 
0.32500 

0.32500 

0.55000 
0.55000 
0.55000 
0.55000 

0.55000 

0.55000 

0.92500 
0.92500 
0.92500 

0.92500 

A55 

0.77500 
0.77500 
0.77500 
0.77500 
0.77500 
0.77500 

0.77500 

0.85000 
0.85000 
0.85000 
0.85000 
0.85000 

0.85000 

0.97500 
0.97500 
0.97500 

0.97500 

EL 

0.311 
0.321 
0.324 

0.325 
0.326 
0.326 

0.327 

0.690 
0.699 
0.702 
0.703 
0.703 

0.704 

0.820 
0.821 
0.821 

0.821 

• E!i 

0.241 
0.294 

0.315 
0.320 
0.323 
0.324 

0.326 

0.663 
0.692 

0.700 
0.702 
0.702 

0.704 

0.820 
0.821 
0.821 

0.821 

The A45's are identically zero in all cases. 

ratic equation for the two values of m defining the two gen 
eralized principal planes: 

Bl-B2+A2~Al m2 + -
a-a 

-m-\=Q. (16) 

Shear Rigidities for Some Regular Composite Laminates 
A class of laminate profiles of considerable importance is 

that composed of plies or ply groups of the same orthotropic 
(or transversely isotropic) material and thickness. This class 
includes regular cross-ply and angle-ply profiles among others. 
Shear rigidities for several such profiles are presented here to 
reveal their inherent nature. The ratio of the two shear stiff
nesses Q55 and Q44, \ = Qu/Qss, is an obvious parameter of 
interest. 

Both ply angle of a material and orientation of the gener
alized principal plane for T5S are angular measures of impor
tance and their sign convention should be emphasized. As 

shown in Fig. 2, both angles are considered positive if they 
are measured in a counterclockwise sense from thex-axis. Note 
that this convention may be opposite to others (for example, 
Tsai and Hahn (1980)), where the angle is considered positive 
when measured from the fiber direction to the coordinate axis 
in a counterclockwise sense. 

Because only one material is involved, all profiles are in
itially homogeneous so that P2 = 0 and Eq. (10)jreduces to 
r55 = p3co2 and r44 = p3«i. The values for r55 and T44 quoted 
herein are nondimensionalized by Q55 H, where H is the total 
thickness and Qfs is the major shear stiffness, i.e., the larger 
of the two stiffnesses so that X< 1. Thus, the shear rigidities 
for an actual plate can be found by scaling the pertinent data 
by 655 H for the profile under consideration. _ 

While the transverse shear stiffnesses r55 and T44 are_of 
primary interest, the tables include calculations for Ais, ASA, 
and A45, which are based on the ply properties with respect to 
the principal shear directions, i.e., 
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Table 5 ir/4(0/90, + 45/ - 45) profile (four plies per group) 

k 

O.l 

0.4 

0.9 

groups 

1 

2 

3 
4 

' 5 

10 

1 
2 

3 
4 

10 

1 
2 

3 

10 

Hw 

0.10710 
0.14565 
0.14799 
0.14870 
0.14901 

0.14941 

0.39100 
0.46650 

0.46863 
0.46925 

0.46987 

0.76102 

0.77909 
0.77915 

0.77918 

r55 

0.21478 
0.14565 
0.14799 

0.14870 
0.14901 

0.14941 

0.57221 
0.46650 

0.46863 
0.46925 

0.46987 

0.79795 
0.77909 
0.77915 

0.77918 

Pr. Angle 

67.50 
NA 
NA 
NA 
NA 

NA 

67.50 
NA 

NA 
NA 

NA 

67.50 
NA 
NA 

NA 

A55 - A44 

0.550 
0.550 
0.550 
0.550 
0.550 

0.550 

. 0.700 

0.700 
0.700 
0.700 

0.700 

0.950 
0.950 
0.950 

0.950 

f2 
K 2 2 

0.195 
0.265 
0.269 

0.270 
0.271 

0.272 

0.559 
0.666 
0.669 
0.670 

0.671 

0.801 
0.820 
0.820 

0.820 

- k l , 

0.391 
0.265 

0.269 
0.270 
0.271 

0.272 

0.817 
0.666 
0.669 

0.670 

0.671 

0.840 
0.820 
0.820 

0.820 

The A45's are identically zero in all cases. 

NA - not applicable, fully balanced profile, all planes are principal planes. 

Table 6 ir/4(0/90/ + 45/ - 45)s symmetric profile (four plies per group) 

k 

0.1 

0.4 

0.9 

groups 

2 
4 

6 
8 

10 

2 
4 

6 

8 
10 

2 
4 
6 
8 

10 

Hw 

0.12684 

0.13850 
0.14223 
0.14408 
0.14518 

0.43202 
0.45182 

0.45798 

0.46101 
0.46282 

0.77151 
0.77550 
0.77675 
0.77736 
0.77773 

r55 

0.16901 

0.16008 
0.15664 
0.15489 
0.15383 

0.50553 
0.48773 
0.48181 

0.47885 
0.47708 

0.78680 
0.78285 
0.78161 
0.78100 
0.78063 

Pr. Angle 

-66.67 
-67.43 
-67.48 
-67.49 
-67.50 

-67.27 
-67.48 
-67.49 

-67.50 
-67.50 

-67.50 
-67.50 
-67.50 
-67.50 
-67.50 

A55 = A44 

0.550 

0.550 
0.550 
0.550 
0.550 

0.700 
0.700 

0.700 
0.700 
0.700 

0.950 
0.950 
0.950 
0.950 
0.950 

^22 

0.231 
0.252 

0.259 
0.262 
0.264 

0.617 
0.645 
0.654 

0.659 

0.661 

0.812 

0.816 
0.818 
0.818 
0.819 

k}, 

0.307 
0.291 
0.285 
0.282 
0.280 

0.722 
0.697 
0.688 

0.684 
0.682 

0.828 
0.824 
0.823 
0.822 
0.822 

The A45 's are identically zero in all cases. 

+ 30° 
-30° 

CORE 

Middle Surface - Plane of Symmetry 

0.05H 

, 
0.45H 

Fig. 3 Symmetrical sandwich profiles 

Ass, AM, AAS 

N 

= 7, 
k=\ 

miKW.mp 
_ 

(A*-A*- i ) . (17) 

From Tss, FM and Ass, 4̂4> the shear correction factors,_Arn 
and #22can be computed, i.e., l?n=Yss/Ass and £22 = T^//!^. 
These shear correction factors should be of interest when com
paring present values with those from previous studies on first-
order shear deformation theory for laminated composite plates 
and shells. Note that A45 has no role even though it may be 

nonzero for certain profiles. This observation underlies an 
obvious inconsistency that is obviated by the introduction of 
generalized principal planes. 

Tables 1 and 2 contain data on regular symmetric and an
tisymmetric (±45 deg) angle-ply profiles. These are special 
cases of a cross-ply profile rotated by 45 deg. Therefore, the 
motions are polarized in two orthogonal planes at ±45 deg, 
their principal shear plane orientations. Since the total thick
ness is held constant in all cases, the data illustrate the variation 
of shear stiffness with the number of plies. For the antisym
metric profile, a balanced design exist as evinced by r55 = T^, 
i.e., isotropy in the transverse shear stiffnesses. In this case, 
the principal angle is not meaningful because r45 = 0 for all 
coordinate systems. From Table 1, it is observed_that as_the 
number of plies increase, both shear stiffnesses, r55 and T^, 
converge onto the same value, which is that for the corre
sponding regular antisymmetric profile in Table 2. 

Tables 3 and 4 contain data on symmetric and antisymmetric 
(±30 deg) angle-ply profiles. The principal angles for a three-
ply symmetric profile show the largest departure from the x-
coordinate direction, i.e., for X = 0.1, 0.4, 0.9, the principal 
angles are -12.13 deg, -10.70 deg, and -10.35 deg, re
spectively. As the number of plies increases the principal angle 
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X. 

0.1 

0.4 

0.9 

Oc/G 

0.01 
0.05 
0.10 

0.01 
0.05 
0.10 

0.01 
0.05 
0.10 

Table 7 

r*44 

0.00824 
0.04116 
0.08226 

0.00824 
0.04118 
0.08235 

0.00824 
0.04119 
0.08237 

Sandwich plate with (+ 30/ - 30/core/ - 30/ + 30) profile 

f5! 

0.00824 
, 0.04118 

0.08236 

0.00824 
0.04119 
0.08237 

0.00824 
0.04119 
0.08237 

Pr. Angle 

-26.2 
-26.2 
-26.2 

-26.2 
-26.2 
-26.2 

-26.2 
-26.2 
-26.2 

A44 

0.05027 
0.08627 
0.13127 

0.06985 
0.10585 
0.15085 

0.10248 
0.13847 
0.18347 

A55 

0.07773 
0.11373 
0.15873 

0.08815 
0.12415 
0.16915 

0.10552 
0.14153 
0.18653 

A J S 

0.01783 
0.01783 
0.01782 

0.01189 
0.01189 
0.01189 

0.00198 
' 0.00198 

0.00198 

& 

0.164 
0.477 
0.627 

0.118 
0.389 
0.546 

0.080 
0.297 
0.449 

k?. 

0.106 
0.362 
0.519 

0.093 
0.332 
0.487 

0.078 
0.291 
0.442 

tends toward zero. The departure from polarized motions for 
an eleven-layer profile is considerably less than a three-layer 
profile as seen upon comparison of Figs. 1(b) and 1(c). In 
the case of the antisymmetric profile, the coordinate directions 
are in fact the principal directions because of the balance of 
shear stiffness with respect to the coordinate directions. For 
four plies or less in this class of profiles there is a noticeable 
difference in shear stiffness in the two principal directions, 
which becomes less distinct as X— 1. 

Tables 5 and 6 are concerned with profiles composed of 
7r/4 ply groups. A TT/4 ply group consists of a (0/90/ + 45/ 
- 45) lay-up or what is called a quasi-isotropic construction. 
The tabular data are given for groups of four plies rather than 
the total number of plies. In Table 5, it is seen that except for 
a one group profile, some sort ofjpalance with respect to the 
middle surface exists as revealed by r55 = r^. Note that A5S =A^ 
for all groups; however, r55 is not equal to IVi for the profile 
of one group of four plies. For the case of symmetric layups 
of TT/4 ply groups, which involves even number of groups for 
midplane symmetry, there is anoticable difference in the values 
of r55 and IV, even though ^55=^144. The principal direction 
tends to -67.5 deg as the number of 7r/4 ply groups increase. 

Shear Rigidities for a Sandwich Profile 
A symmetric sandwich profile, as shown in Fig. 3, was con

sidered. The total thickness is denoted by H and the profile 
consists of face sheets, each with two orthotropic (±30 deg) 
plies of thickness /ZfaCe = 0.05H, and an isotropic core of thick
ness /*core = 0.90H. Let the orthotropic ply shear stiffness, 
g55 = G, the normalization factor in the two relevant param
eters: (1) \ = QM/QSS> ratio of ply shear stiffnesses and (2) 
Gc/G, ratio of core to ply stiffness. 

Table 7 contains data for T^, r55, (all values are normalized 
by Qs$H) and &n, A 2̂. It shows that the shear rigidities are 
quite low, reflecting the core's low shear modulus. The cor
responding shear correction factors also differ significantly 
from TT2/12 = 0.822, the value associated with a homogeneous 
isotropic_profile. However, for all cases X, the shear rigidities 
r55 and IV, when based on (G<J/), are seen to be nearly equal 
to (ir2/12)(GcH). This observation shows that the shear rig
idity is essentially that based on core shear stiffness with the 
face shear stiffnesses essentially playing no role. 

Concluding Remarks 
A procedure has been presented for constructing rational 

transverse shear constitutive relations for a first-order shear 
deformation theory suitable for laminated anisotropic shells 
and plates. The basic concept is analogous to that used by 
Mindlin (1951) and Dong and Tso (1972). For general lami
nated anisotropic profiles, it is necessary to hypothesize gen
eralized principal shear planes because of nonpolarized 
motions. These principal planes were determined by a least-
squares minimization of the out-of-plane motions. Data gen

erated for a variety of regular laminated composite profiles 
showed that when X = g44/g55 is low, the shear correction 
factors exhibit a large departure from that for a homogeneous, 
isotropic profile (where *n = &22 = T2/12 = 0.822). For highly 
anisotropic shear stiffnesses, it is essential that appropriate 
shear rigidities (rather than ad hoc values) be used in structural 
analysis in order to obtain reliable response data. The tables 
in this paper have been abbreviated. More complete data may 
be found in Chun (1991), where data for other profiles, such 
as ?r/6 ply groups and other regular angle-ply and sandwich 
profiles, are also given. 

The accuracy and extent to which this shear constitutive 
relations capture the behavior in laminated anisotropic shells 
and plates involving shear are addressed in a companion paper 
(Chun and Dong, 1991). Note also that the shear rigidities are 
predicated on flat-plate results and assumed to apply to both 
plates and shells. The efficacy of this premise needs to be 
explored. 

Finally, it is noted while a macro constitutive relation has 
been constructed in terms of shear resultants and the gener
alized shear angles, there is a drawback in terms of an inability 
to predict local transverse shear stresses from a stress-strain 
relation. Thus, recourse to equilibrium considerations, using 
essentially the same procedure as in classical theory, is nec
essary. 
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Shear Constitutive Relations for 
Laminated Anisotropic Shells and 
Plates: Part II—Vibrations of 
Composite Cylinders 
In Part I of this paper, a system of shear constitutive relations was proposed for a 
first-order shear deformation theory of laminated anisotropic plates and shells. For 
laminated anisotropic structures, these shear constitutive equations involved the 
concept of generalized shear planes. Herein, an extensive parametric study is pre
sented to assess the modeling capability of these shear constitutive relations in a 
class of laminated composite and sandwich cylinders. Classical theory results are 
also given in order to fully understand the influence of anisotropy on the accuracy 
and ranges of validity of both first-order shear deformation theory and classical 
theory. It is seen that the proposed system of shear constitutive relations provides 
highly accurate frequency results over the range of anisotropy considered. 

Introduction 
The low shear moduli in laminated fiber composite plates 

and shells dispose such structures to greater shear deformation 
in comparison to their homogeneous isotropic counterparts. 
Consequently, the range of validity of classical theory is nar
rowed and a refined theory that accounts for shear deformation 
is needed. While a plethora of refined theories have appeared, 
no first-order shear deformation theory is available which is 
valid for laminated anisotropic shells and plates with arbitrary 
thickness profiles. In Part I, Dong and Chun (1992) proposed 
a system of shear constitutive equations for a first-order shear 
deformation theory. Herein, a study is presented to evaluate 
the efficacy of these constitutive relations in modeling vibra
tional behavior of a class of laminated composite structures 
over a range of material properties of practical interest. 

The shear constitutive equations in a first-order shear de
formation theory relate shear resultants (QUQT) to their cor
responding generalized shear angles (YIZ,Y2Z) in the form: 

(1) 

where (Tss.r^.r^) are shear rigidities. Dong and Chun (1992) 
proposed a method for assigning appropriate values to these 

"a" = 
^5$ r4 5 

r45 T44 
7u 

_Y2*_ 
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shear rigidities. Their procedure may be considered as a gen
eralization of the methodology of Mindlin (1951) and Dong 
and Tso (1972) for homogeneous isotropic plates and laminated 
orthotropic profiles, respectively. In order to quantify 
(r55,r44,r45) for general laminated anisotropic plates and shells, 
a concept called generalized principal shear planes is needed 
because of the absence of polarized thickness-shear motions. 
Even though polarization in two mutually orthogonal planes 
may not exist, Eq. (1) admits a transformation to diagonal 
form. The hypothesis of generalized principal shear planes 
overcomes this inconsistency. These principal planes are es
tablished by a least-squares minimization of the out-of-plane 
motions of three-dimensional elasticity results. Upon estab
lishing principal shear rigidities (Tss.r^), values in other co
ordinates follow via transformation. As an illustration of the 
procedure, Dong and Chun (1992) presented shear rigidities 
for some regular symmetric and antisymmetric composite lam
inates and a sandwich construction. 

Herein, an assessment of the accuracy of the response data 
using these shear constitutive relations is undertaken by com
paring the natural frequencies for circular cylindrical shells by 
1st SDT with those of three-dimensional elasticity, the latter 
by finite element analysis due Huang and Dong (1984). In these 
comparisons, classical theory data are included in order to 
provide a complete perspective on shear deformation effects. 
Only the general class of regularly symmetric and antisym
metric composite profiles is studied. However, it represents an 
important class where many applications have been witnessed. 

In the next section the relevant first-order shear deformation 
theory equations for a cylindrical shell and their specialization 
to classical theory are summarized. It is recalled that r55 and 
T44 are based on infinitely long thickness-shear motions in a 
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flat plate. These rigidity values are to be directly incorporated 
into the analysis of shell structures where curvatures are pres
ent. It is tacitly assumed that the curvatures do not affect the 
shear rigidities so that no modification of their values is made. 
Also, the shear rigidities, r55 and I^t, were determined inde
pendently of any information regarding EL and ET. Thus, a 
parametric study appears to be the only means to gain an 
appreciation of the role that these parameters on the accuracy 
and range of validity of this system of first-order shear de
formation theory shear constitutive relations. 

Natural Oscillations of Cylindrical Shells 
Thin shell approximations are invoked, where the shell's 

radius/thickness (a/H) ratio is assumed small and neglected 
in comparison to unity. Establish right-handed cylindrical co
ordinates (x,d,z) with (x,6) as the reference surface axial and 
hoop coordinates and z as the normal or radial measure. In a 
first-order shear deformation theory the kinematic hypothesis 
asserts linearity of the shell displacements (Ux,Ue> W) over the 
thickness in terms of three reference surface displacements 
(ux,ue,w) and two bending rotations (fix,fig), i.e., 

Ui(x,e,z,t) = Ui(x,e,t)+zPi(x,e,f), (i=x,ey, 
W(x,e,z,t) = w(x,0,t). (2) 

The other dependent variables are the eight deformation meas
ures and their corresponding force and moment resultants, 
which are grouped as follows: [e}T= [exx,egg,yxg], [K)T 

= [Kxx,Kee,Kxe], {y)T= t7«»7fal and [N]T= [Nxx,Nee,Nxe], 
[MV = [Mxx,Mee,Mxe\, (G! = [Qx,Qe\- The deformation 
measures in terms of the reference surface displacements and 
rotations are given by: 

£xx " x teo- - (ue,g+w); yxe = u6fX + -ux 
a a 

Kee'- fie.e't KxO — @0,x + ~ fix 

1 
7 « = ^ + fo yez = -(w,o-Uo) + Pe-

(3) 

(4) 

(5) 

In addition to shear constitutive relations of Eq. (I)1, the con
stitutive equations relating the force and couple resultants to 
their corresponding deformations measures are involved: 

(6) 
N A B 

M\ ~ [B D 
where [A], [B], and [D] contain the extensional, coupling, and 
flexural rigidities. The five equations of motion are 

aNxx,x + Nx0,e = a(p1ux+p2fix) 

aNrij + Ne$i6 + Qg = a(piiie + p2pe) 

aQxs+Qo,0-Nee = ap1w (7) 

aMxxs+Mx9ie-aQx = a( p2ux + p$x) 

aMaj + Mee<e -aQe = a( p2iig + pifig) 

where pu p2, pi are inertial integrals of the mass density p(z) 
over the thickness 

(Pi,P2,P})= /ofe)(l.«.z2)cfe- (8) 

Substituting the force and moment resultants in terms of their 
corresponding deformation measures, as given by Eqs. (1), 
(3)-(6), into Eq. (7) leads to five displacement equations of 
motion, L;(«x,M9,w,/3x,/3e) = 0 (/= 1,2,...,5). For sake of brev-

'Subscripts 1,2 in Eq. (1) refer to the x and 0 directions in cylindrical coor
dinates. 

ity, these equations are not given here but they may be found 
in Chun (1991, pg. 46). Five boundary conditions are involved 
in first-order shear deformation theory, which along the edge 
x= const, have the following form where the barred quantities 
refer to prescribed values. 

Nxx = NxxOr Ux=ux; 

Mxo — Ma _ 
Na + = Nxo + or ue = ug\-

a a 

Qx=Qx or w=w; 

MXX=MXXOT 0x=A; 

Mw,=Mxo or /3„ = /!,,. 

(9) 

For free vibrations with periodic spatial wave forms, the 
solution is simple harmonic motion in time and space, i.e., 

ux(x,6,t) 

ue(x,d,t) 

w(x,6,t) 

Px(x,0,t) 

&x(X,0,t). 

Uxn 

Uen 

W„ 

BXn 

Ben. 

i(TTX/L + n6 + ut) i r n i(irx/L + nO + iMt) (10) 

where Ux„, UQ„, W„, BX„, Bg„ are modal amplitudes, n the 
circumferential wave number, L the half wavelength in the 
axial direction, and u> the circular frequency. Solution (10) 
represents an infinite harmonic wave train with periodic con
ditions every half wavelength L apart. Substitution of Eq. (10) 
into the five displacement equations of motion yields the stand
ard matrix structural vibration problem 

[K\{U)=o?[M\{U) (11) 

where [K] and [M] are (5 X 5) hermitian and real positive sym
metric matrices whose elements may be found in Chun (1991, 
pp. 49-50). The solution to Eq. (11) relates co2 to a given pair 
of wave numbers, \/L and n. By systematically varying these 
wave numbers, the complete frequency spectrum can be cov
ered. 

Classical theory equations are obtained by ignoring shear 
deformation (7X« = 7W = 0) and rotatory and coupling inertia 
(pi = Pi = 0). Thus, the last two equations of motion in (7) revert 
to equilibrium equations and fig, in terms of the reference 
surface displacements, takes the form: 

0x=-wy, fig 
1 
- ( W , f l - M 8 ) . (12) 

Three equations of motion are involved in classical theory, 
Lj(ux,Ug,w) = 0 (/'= 1,2,3). At the edge x= const., four bound
ary conditions rather than five are accommodated in classical 
theory. More specifically, the first two and fourth conditions 
in Eq. (9) remain as given, but the third are fifth combine to 
become: 

Vx=Qx + -Mxg,e 01 W=W. (13) 

The solution to the classical theory equations is obtained in 
the same way, but in terms of the three reference surface 
displacements, i.e., 

ux(x,e,t) 
Ug(X,d,t) 

w(X,e,t) 
_ 

= 

_ 
Ux„ 
Ugn 

wn 

-

iiirx/L + nd + ut) — f Tf)pi('!rx/L + nd + (0t) 

(14) 

Upon substitution of Eq. (14) into the equations of motion, 
the same algebraic eigenvalue problem form as that given by 
Eq. (11) arises, except that the matrix sizes are (3x3) . The 
displacement equations of motion and the components of the 
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(3 x 3) matrices are also contained in Chun (1991, pp. 51-53). 
Equations for a plate in rectangular cartesian coordinates 

may be obtained from the shell equations by first substituting 
y = ad and then taking the limit of a-» oo in all pertinent expres
sions. 

Parametric Study of Shear Deformation 
The range of validity of classical and first-order shear de

formation theory theories is explored herein for the class of 
regularly symmetric and antisymmetric laminated composite 
and sandwich cylinders. This cla,ss refers to profiles composed 
of equal thickness laminas of the same unidirectional fiber-
reinforced composite material. The bases of comparison are 
the finite element results predicated on linear three-dimensional 
elasticity by Huang and Dong (1984). 

The amount of shear deformation is influenced by many 
factors. In a homogeneous isotropic cylinder, the parameters 
of importance are the radius a, total thickness H, axial wave 
length L, and circumferential wave number n. Three of these 
four parameters can be cast into two relevant ratios. They are 
the radius/thickness (a/H) ratio and the thickness/wave length 
of vibration (H/L) ratio. While these parameters obviously 
remain important in laminated composite structures, other 
factors share equally prominent roles. In this study, the ratio 
of the transverse shear moduli in the two principal material 
directions of the composite, \ = G2/GU the orthotropic exten-
sional moduli ratio, EL/ET, the ratio of G\/ET, and the number 
of layers comprising the laminate composite profile are pa
rameters of importance. In all examples involving composites, 
the transverse shear modulus G\ is assumed to be along the 
EL direction. Moreover, the ratio for G\/ET was taken to the 
0.5 for all cases with the anticipation that this is representative 
for typical composites. To also vary this ratio would enlarge 
the manuscript beyond a reasonable limit. All other parameters 
are varied by varying the ratios \ = G2/G\ and EL/ET. 

Previous studies by Whitney and Leissa (1969), using clas
sical theory, established that the extensional/flexural coupling 
inherent in laminated composite structures diminishes rapidly 
as the number of layers is increased. In other words, regularly 
antisymmetric profiles with more than two layers behave es
sentially as a profile of equal thickness composed of an infinite 
number of layers, or alternatively, a homogeneous profile. This 
is also seen to be valid here. Thus, the most critical cases in 
the present study are those of three (symmetric) or two (an
tisymmetric) layers and these constructions will occupy the bulk 
of our attention. Profiles with more than three layers will yield 
more accurate results in comparison with profiles of two and 
three layers. 

Homogeneous Isotropic Cylinder. Frequency results for a 
homogeneous isotropic cylinder provide a baseline for assess
ing changes in the ranges of validity of first-order shear de
formation theory and classical theories as a function of the 
(inherently low) shear rigidity in the class of laminated com
posite materials under consideration. A radius/thickness ratio 
a/H of 10 was selected with the view that it represents a rea
sonable nominal limit on thinness. For bodies with a smaller 
a/H ratio, analyses using three-dimensional elasticity rather 
than shell theory would be more appropriate. All frequencies 

are nondimensionalized by the factor sJE/pH2, where (E,p,H) 
are Young's modulus, density, and thickness, respectively. 
Poisson's ratio v was assumed to be 0.25 in this example. In 
terms of the pertinent parameters in the present study, y = G2/ 
G] = \,EL/ET= 1 and G/E=QA. In Fig. 1, the frequency spec
tra, fl versus H/L (where fi = co/'V E/pH2), for the lowest two 
branches are plotted for three circumferential wave numbers 
(« = 0,2,10). In these graphs, the percentage differences be
tween results of first-order shear deformation theory and clas
sical theories with the elasticity data are indicated. 

It can be seen that both first-order shear deformation theory 

n = 0 1.49 %(c) 
1.48 %(s) 

0.003 

n = 2 n=10 

0.001 I J_ 0.003 _L J _ I 0.2 
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 

H/L H/L 

Fig. 1 Frequency spectra for isotropic cylinder-? = 0.25, a/H= 10 

0.1 0.2 0.3 0.4 0.5 
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Fig. 2 Frequency spectra for first flexural mode in three-layer ±45 cleg 
angle-ply cylinder-A = 0.1, EL/ET=S, a/H= 10 

0.1 0.2 0.3 0.4 0.5 

H/L 

and classical theory data evince good agreement with three-
dimensional elasticity over a wide H/L range for all three 
circumferential mode numbers. In this case of classical theory, 
the results are predictably less accurate with decreasing axial 
wave length and increasing circumferential wave number when 
shear deformation becomes important. 

±45 Degree Angle-Ply Cylinder. This is a special case of 
a cross-ply (0 deg/90 deg) construction with material axes 
rotated by 45 deg with the coordinate axes. The thickness shear 
motions are polarized in two orthogonal planes in this case so 
that the concept of generalized shear planes is not tested here. 
Nevertheless, the results provide a benchmark for comparison 
of profiles with the absence of polarized motions. Again, the 
radius/thickness ratio a/H= 10 and the nondimensional fre
quency in this case is Q = co/A\/ET/pH2, where ET, p, H are 
respectively, the transverse extensional modulus, mass density, 
and total thickness of all plies comprising the laminate. The 
shear rigidities for these two cases are given by Tables 1 and 
2 of Part I of the paper. 

Frequency spectra for the lowest two modes of vibration for 
a three-layer cylinder are shown in Figs. 2 and 3 for EL/ET= 5 
and 50, respectively, X = 0.1 and circumferential mode numbers 
n = 0,2,10. These figures illustrate the degradation of accuracy 
of classical theory data with increasing EL/Er ratio. It is seen 
that first-order shear deformation theory retains its accuracy 
in all cases with the exception of «= 10 and EL/ET= 50. In 
Fig. 4, the percentage error in the frequencies (percent er
ror = [(w - oieiast) • 100/weiasJ) for the specific value of H/L = 0.1 
are plotted against EL/ET for a family of X values, showing 
the loss in accuracy with decreasing X. The modeling capability 
of first-order shear deformation theory appears to be much 

more reliable than classical theory over the ranges of EL/ET 
and circumferential mode numbers. 

Data for the two-layer ±45 deg cylinder for EL/ET= 5 and 
50 and X = 0.1 and « = 0,2,10 are plotted in Figs. 5 and 6, 
respectively. The results show that both first-order shear de
formation theory and classical theory for the two-layer ±45 
deg lay-up are somewhat more accurate than the three-layer 
regular symmetric profile. The accuracy of the frequency data 
for H/L = 0.1 as a function of X is shown in Fig. 7. It can be 
seen that the results for the two-layer case are less sensitive to 
X as the maximum errors for the EL/ET= 50 are less than four 
percent for classical theory and 1.5 percent for first-order shear 
deformation theory. 

± 30 Degree Angle-Ply Cylinder. For profiles with a ± 30 
deg angle-ply lay-up, nonpolarized thickness-shear motions 
exist. The material properties, geometric parameters used here 
are the same as those of the ±45 deg angle-ply case and the 
shear rigidities are given in Tables 3 and 4 of Part I of this 
paper. Spectral curves for a three-layer cylinder with EL/ET= 5 
and 50, X = 0.1, and « = 0,2,10 are shown in Figs. 8 and 9, 
respectively. Some dramatic results can be seen in these figures. 
For example, for n = 0 and H/L = 0.1, the classical theory result 
shows a difference of 3.04 percent for EL/ET=5 but suffers 
a considerable loss of accuracy for EL/ET= 50 where a dif
ference of 40.79 percent is observed. This large disparity due 
to the higher orthotropy is also seen in circumferential wave 
numbers n = 2,10. The first-order shear deformation theory 
results are in excellent agreement, with the exception of the 
case EL/ET= 50 and n = 10. In Fig. 4, the percentage error of 
the lowest frequency is plotted against EL/ET with X as a 
parameter. This plot indicates the various influences of these 
two parameters on the accuracy of first-order shear defor-
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mation theory and classical theories. As these results are plotted 
side by side with the ±45 deg angle-ply case, the error due to 
nonpolarized motions can also be seen. 

Results for a two-layer ± 30 deg angle-ply lay-up are shown 
in Figs. 10,11, and 7. The higher accuracy and lower sensitivity 
to X for this antisymmetric lay-up are analogous to that seen 
in the ±45 deg case. 

Sandwich Construction. A sandwich cylinder with ±30 
deg face sheets was considered whose profile is shown in Fig. 
3 of Part I. Each face is composed of two plies with a subtotal 
thickness of 0.05H and an isotropic core of 0.9H thickness. 
In this class of problems, there is one obvious additional pa
rameter, expressed herein as the ratio Gc/G (ratio of the core 
shear stiffness to that of the composite). The shear rigidities 
for this profile are given in Table 7 of Part I. Frequencies are 

again nondimensionalized by sj ET/pH2. In Fig. 12, frequency 
spectra are plotted for EL/ET= 50, Gc/G = 0.01, A = 0.1, and 
« = 0,2,10. This plot shows the first-order shear deformation 
theory results to be very near the elasticity results but that 
classical theory results can degenerate quite rapidly with in
creasing axial and circumferential wave numbers. For param
eters evincing less anisotropy, i.e., lower EL/ET ratios and 
higher Gc/G ratios, the differences between classical theory 
and elasticity are less dramatic. Plots showing these results 
may be found in Chun (1991). 

Conclusions 
The main purpose was evaluation of the proposed first-order 

shear deformation theory shear constitutive relations for the 
laminated anisotropic plates and shells. An extensive para
metric study of the vibration frequencies of cylinders allowed 
an assessment of the range of validity of these relations. Also, 
classical theory results were given to provide a clearer under
standing of the role of shear deformation in limiting the range 
of applications. 

The numerical vibration results for the class of laminated 
composite and sandwich cylinders were believed to be a good 
representation of realistic applications. This parametric study 

helped delineate the range of validity of both first-order shear 
deformation theory and classical theory as influenced by the 
ratios EL/ET and \ = G2/Gl. The degradation in the accuracy 
of classical theory results with increasing ratio of EL/ET was 
more evident in the three-layer (symmetric) profiles, and was 
substantially less in two-layer antisymmetric profiles. In com
parison with a homogeneous, isotropic cylinder, the high EL/ 
ET ratios and low X values in laminated composite cylinders 
can strongly abbreviate the range of application of classical ' 
theory. More data on other profiles and on the influence of 
other parameters may be found in Chun (1991). 

These shear constitutive relations based on the concept of 
generalized shear planes have been shown to possess good 
modeling capabilities over the application range intended for 
laminated composite plates and shells. Using the transverse 
shear stiffness values as reckoned by the proposed method 
should obviate any need for subsequent refinement of the 
results such as the a posteriori estimates of Noor and Peters 
(1989). 
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Mathematical Structure of Modal 
Interactions in a Spinning Disk-
Stationary Load System 
In a previous paper (Chen and Bogy, 1992) we studied the effects of various load 
parameters, such as friction force, transverse mass, damping, stiffness and the 
analogous pitching parameters, of a stationary load system in contact with the 
spinning disk on the natural frequencies and stability of the system when the original 
eigenvalues of interest are well separated. This paper is a follow-up investigation to 
deal with the situations in which two eigenvalues of the freely spinning disk are 
almost equal (degenerate) and strong modal interactions occur when the load pa
rameters are introduced. After comparing an eigenfunction expansion with the finite 
element numerical results, we find that for each of the transverse and pitching load 
parameters, a properly chosen two-mode approximation can exhibit all the important 
features of the eigenvalue changes. Based on this two-mode approximation we study 
the mathematical structure of the eigenvalues in the neighborhood of degenerate 
points in the natural frequency-rotation speed plane. In the case of friction force, 
however, it is found that at least a four-mode approximation is required to reproduce 
the eigenvalue structure. The observations and analyses presented provide physical 
insight into the modal interactions induced by various load parameters in a spinning 
disk-stationary load system. 

Introduction 
The dynamics of a spinning disk in contact with a stationary 

load system has attracted much attention because of its ap
plications in such fields as computer disk memory units and 
circular saws. Iwan and Moeller's (1976) work appears to be 
the first publication on this subject in which they calculated 
the natural frequencies of vibration and discussed the insta
bilities caused by the addition of translational mass, damping, 
and stiffness in the load system. Ono et al. (1991) extended 
Iwan and Moeller's work to include the corresponding rota
tional (pitching) parameters in the load system as well as the 
friction force between the spinning disk and the stationary 
load system (see Fig. 1). They concluded that pitching param
eters have similar effects as their transverse counterparts and 
friction force tends to destabilize the forward travelling wave 
but stabilizes the reflected and backward travelling waves. In 
an attempt to give an explanation of these phenomena observed 
from calculations, Chen and Bogy (1992) derived expressions 
for the derivatives of the eigenvalues with respect to various 
parameters in the load system. However, this formulation is 
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useful only when the eigenvalues of interest are well separated 
and interactions between the neighboring modes are negligible. 
However, it is not uncommon that some eigenvalues (which 
are purely imaginary in the case of a freely spinning disk) are 

disk 

(b) 

Fig. 1(a) Global picture of the spinning disk and the stationary load 
system, (b) parameters in the load system 
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very close ^o each other, or even identical. In such cases, the 
strong interactions between the neighboring modes have to be 
taken into account when the load parameters are applied. Al
though modal interactions in a spinning disk-stationary load 
system have been recognized for some time, the mathematical 
structure of these phenomena was not well understood. 

While perturbation theory is a useful approach for dealing 
with this problem (Perkins and Mote, 1986), it encounters the 
difficulty that the radius of convergence of the perturbation 
series may approach zero as the unperturbed eigenvalues in 
question get closer to each other. In particular, when two 
eigenvalues coincide, the radius of convergence may vanish 
and the perturbation problem becomes singular (Bender and 
Orszag, 1978). 

In the present paper we study the mathematical structure of 
this eigenvalue problem when two eigenvalues are identical or 
very close to each other in the frequency-rotation speed pa
rameter space. By using the orthogonality relations developed 
in Chen and Bogy (1992) and the eigenfunction expansion 
method, we replace the original partial differential equation 
by a system of infinite linear homogeneous algebraic equations. 
Through a sequence of approximations obtained by truncating 
an infinite dimensional matrix, we establish that the sequence 
converges very fast to the exact solution in the presence of 
both the transverse and pitching parameters. Furthermore, it 
is found that a simple two-mode approximation displays the 
general features of the eigenvalue changes with the load pa
rameters. Based on the two-mode approximation, we examine 
analytically the properties of the perturbed eigenvalues as func
tions of the load parameters when two modes are almost de
generate. 

Equation of Motion 
Consider a circular, elastic disk rotating in contact with a 

stationary load system containing transverse mass mz, spring 
kz, dashpot cz, and the analogous pitching elements 1$, k^, c$, 
as shown in Fig. 1. In addition, the load system applies a 
constant friction force Fe to the disk in the circumferential 
direction at the coupling point between the load system and 
the spinning disk. The equation of motion of this coupled 
system, in terms of transverse displacement w and with respect 
to the stationary coordinate system (r, 0), can be written as 

h ha« 
ph(w,t + 2Qwie + ii2we$) +Z>V4w—- {of\vr)r-'- , 

r r 

r I £)5(0) I mzwr„ + czw<l + kzw + — wiB 

+ ?8(r- £)[(I<t,w,tte + ^w,« + ^w,,)5(0)],<, (1) 

where 

D = 
Eti 

12(1 - v2y 
V4 = 

1 11 iil 
dr2+ r dr +r2 dP 

The parameters Q,p,h,E, and v are the rotation speed, density, 
thickness, Young's modulus, and Poisson's ratio of the disk. 
5(:) is the Dirac delta function. The coupling position between 
the load system and disk is assumed to be r = £ and 0 = 0. 
The spinning disk is clamped at the inner radius r = a and 
free at the outer radius r = b. The generalized plane stresses 
ar and og are due to the centrifugal effect. We neglect the effect 
of the friction force on these in-plane stresses because the 
coefficients of friction in the systems of interest are usually 
relatively low. Equation (1) can be rewritten in the operator 
form 

(M+M)wtll+ (G+G)w„+ (K+K)w=0 (2) 

M=ph 

^ir.i)m^J^Jp{r.^mL 

G = 2phQ 
dd 

G = 8(r-^)5(e)[^-^^r2)-
£$8(r-^5'(e)i-Q 

K=DV4 + ph 

c7 c^_^ 
? dd2 

1 d 

? 
d_ 

dd 

fi W-JrJrV dr 'pr2dd2 

*-.(,-w<.>^!+3£ 
--fHr-iWmx 

S'O) is the derivative of the Dirac delta function. 
Equation (2) can also be cast in the first-order operator form 

(A + A)x„ - (B + B)x = 0 (3) 

by defining the state vector 

' vt\, 

w 

and the matrix differential operators 

A s 
~M 0" 

0 K , A s 
~M 

0 

B = 

0" 

K » 

-G 
K 

-K 
0 

, B = 
-G 
K 

-K 
0 

For a freely spinning disk (i.e., in the absence of the load 
system), Eq. (2) can be reduced to 

Mw,„ + Gw,t + Kw = Q. (4) 

Since M and K are symmetric and G is skew, Eq. (4) is a 
standard gyroscopic equation. The eigenvalues of the e ' time-
reduced form of Eq. (4), together with the associated homo
geneous boundary conditions, are purely imaginary and occur 
in complex conjugate pairs, i.e., \°m„ = iwmm where wmn is real. 
The eigenfunction corresponding to }?mn is in general complex 
and assumes the form 

Ar)e* (5) 

where 

Rmn is a real^alued function of r. The eigenfunction corre
sponding to \°m„ is H^,„, where overbar means complex con
jugate. If we consider only the positive um„, then wmn in Eq. 
(5) with +ind is a backward travelling wave with n nodal 
diameters and m nodal circles, which is also denoted by (m, 
n)b. Similarly, w°m„ with —inO is a forward travelling wave 
(m, n)f. Of interest is the dependence of the natural frequencies 
on the rotation speed fi. The critical speed fic for the mode 
(m, n) is defined as the rotation speed at which wmn of the 
backward travelling wave (m, ri)b is zero. For fi greater than 
fic, this mode is a forward travelling wave, and is called a 
"reflected wave," denoted by (m, ri)r. Figure 2 shows the 
natural frequencies, both positive and negative, for a 5.25-in. 
computer floppy disk as functions of rotation speed. This result 
is obtained from a finite element computation presented in 
Ono et al. (1991). The material properties of the disk used in 
the calculation are p = 1.3 x l(r kg/m3, E = 4.9 x 109 

N/m2 , v = 0.3, h = 0.078 mm, a = 17.5 mm, b = 65.0 mm, 
and Vb = 0.75. 

It is noted from Fig. 2 that there are four different situations 
in which two eigenvalues become degenerate, that is, the nat
ural frequency loci intersect. 

Case A: A reflected wave meets a backward wave, for 
example, point A is the intersection of modes (0,2)r and (0, !)&. 
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into Eq. (4) we get, for each n, an ordinary differential equation 
for Rm„(r), 

where 

QnR«,n(r) = (wm„±nn)2Rm„(r) 

d 
Qn ph \dr2 + rdr r2 

a r
 d) na<> 

prdr \ ' drj pr2 

200 4 0 0 600 8 0 0 1 0 0 0 

Rotation Speed Q., rpm 

Fig. 2 
disk 

Natural frequency versus rotation speed for a freely spinning 

Case B: A backward wave meets its complex conjugate at 
its critical speed, for example, point B isjhe intersection of 
mode (0,5) and its complex conjugate, (0,5). 

Case C: A forward or backward wave meets another for
ward or backward wave, for example, point C is the intersec
tion of modes (0,2)^ and (0,1)6. 

Case D: A reflected wave meets another reflected wave, 
for example, point D is the intersection of modes (0,3)r and 
(0,4)r. 

In the following, we shall study the behavior of eigenvalue 
changes in the neighborhood of these intersection points re
sulting from the addition of various load parameters. 

Orthogonality Relations and Eigenfunction Expansion 
Theorem 

It has been shown in Chen and Bogy (1992) that for a freely 
spinning disk, the orthogonality relations among the eigen-
functions can be written as follows: 

Since Q„ is a self-adjoint linear differential operator in the 
domain a < r < b, the system of eigenfunctions Rmn(r) is 
complete (Stakgold, 1979), in the L2 sense, and the expansion 
theorem holds for Rmn(r). Through a standard procedure for 
constructing a complete system of functions of two variables 
(Courant and Hilbert, 1962), it is established that the functions 
{Rmn(r)e±'"e) f ° r m a complete system of functions in r and 
6 in the domain 0 < 6 < 2TT, a < r < b. 

After establishing the completeness of the eigenfunctions 
for a freely spinning disk, we can expand the eigenfunction 
solution x of Eq. (3) as the infinite linear combination 

p = 0 q = -oo 
(8) 

Substituting Eq. (8) into (3) and taking the inner product be
tween x°mn and both sides of Eq. (3), with use of the ortho
gonality properties (6) and Eq. (7) we get 

cmn(A A m n )A m n +^ j 2_j C J X A ™ - B P = 0 

where 

A'"" 

p = 0 9 = 

= (x° 
= <x° 

<&,, Ax^> =0 , <x°m„,Bx°pq> = 0 if XL,*A°, 

where the inner product between two vectors xm„ and 
defined as 

(6) 

PQ ^ Amn» 
•amn _ , 0 A 0 v 

,0 
kPQ/ 

"•X-pq? 

<*pq — \Amn> "Apq/ 

Continuing this procedure through all the eigenfunctions we 
obtain an infinite matrix equation satisfied by the coefficients 
WHrt' 

\Xmn*X-pq) \ XmnXp 
0 Ja 

,rdrd6 Hc = 0 

where 

H = 

(A-AMJ + XASJ-B! 
\ A 0 1 R0 1 
A « 0 0 ~ H00 

'00 

\ A 1 0 ft1' 

(A-

AAoi — B0i 

" Aoi)Aoi _+ AA0i -

\ A 1 0 M ! 0 
AAoi — B 0 1 

«01 
- » o i 

...xA?g-ft!8 
\ A 0 1 R0 1 

• .AAifl — JJIO 

and x„ is the transpose of the state vector x„ 

\° -
<X° 
^x0 Ax° > 

In addition, 

(7) 

and 

y. 

To obtain the eigenvalues of Eq. (2) or (3) for the disk-load 
system, we represent its eigenfunction solution as an expansion 
in terms of the eigenfunctions of the freely spinning disk. 
Before proceeding further, it is desirable to argue that the 
eigenfunction expansion theorem holds in this case, i.e., every 
continuous complex function f(r,6) satisfying the prescribed 
boundary conditions can be expanded in a uniformly conver
gent series in the eigenfunctions of the unloaded system 

00 OO 

/(r'0> = I ] S WtC(/-,0). 
m = 0 n= -oo 

First we observe that the complex functions {e±me] are com
plete, in the L2 sense, in the domain (0, 2ir). By substituting 
the separable solution 

wmn(r,6,t)=Rmn(r)ei^™,±ne) 

c = (%>» coi> - ' - . cio. cn, 
While in practice we are unable to deal with this infinite matrix 
H, we can always devise an approximation sequence in which 
we expand x in terms of N modes with natural frequencies 
closest to the frequency range of interest. By doing so we can 
approximate Eq. (1) by a sequence of matrix equations 

H„c„=0 (9) 
where the N by N matrix HN is a truncation of matrix H by 
retaining only TV rows and N columns. The existence of non-
trivial solutions cN satisfying Eq. (9) requires 

detHN=0. (10) 

Equation (10) defines an M h order polynomial in A, which is 
a function of the various load parameters. In the following 
we will verify numerically the convergence of this approxi
mation as /^increases. It is noted that the off-diagonal terms 
in HN are responsible for the modal interactions between these 
modes. In the special case in which only the diagonal terms 
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are retained, Eq. (10) is equivalent to a system of TV uncoupled 
linear equations in X, and the results can be reduced to those 
presented in Chen and Bogy (1992), where modal interactions 
were not considered. 

Effects of Transverse Mass mz 

It has been shown in Chen and Bogy (1992) that the presence 
of mz in the load system tends to decrease the natural fre
quencies of the forward and backward waves, but increases 
the natural frequencies of the reflected waves as long as the 
natural frequency of interest is well separated from the others. 
However, if two modes are almost degenerate, the modal in
teractions are so strong that these rules are no longer appli
cable. The dashed lines in Fig. 3(a) are the natural frequency 
loci of modes (0, 2)r and (0, l)b for a freely spinning disk. 
These two modes are degenerate when the rotation speed, 
denoted by Qd, is 1092.1 rpm, which corresponds to point A 
in Fig. 2. The solid lines in Fig. 3(a) are the corresponding 
results for the case mz = 0.1 g. Both the solid and dashed 
lines are obtained by the finite element method. As mz increases 
from zero and the rotation speed is lower than Qd, the natural 
frequencies tend to approach each other and eventually merge, 
while the real parts of \m„ ( = amn + ioimn) become nonzero 
and therefore instability is induced. On the other hand, no 
merging occurs when the rotation speed is higher than 0d. 
Moreover, when Q = Qd the natural frequencies separate, with 
one remaining unchanged and the other decreasing, as shown 
by the solid lines in Fig. 3(a). In Fig. 3(b) the rotation speed 
is fixed at 1090 rpm, just below fid, while mz ranges from 0 
to 3g. The dashed lines, which are obtained by the finite element 

method show how the eigenvalues change as mz increases. It 
is seen that these two natural frequency loci approach each 
other and merge for mz greater than mzl, and split again after 
mz is greater than mzi-

In order to reproduce the dashed lines in Fig. 3(b) by using 
the eigenfunction expansion method, we followed the proce
dure described in the preceding section. The solid lines in Fig. 
3(b) show the progress of convergence as the number of ei-
genfunctions in the approximation increases. The eigenfunc
tions used in the expansion method are chosen in such a way 

Fig. 4 
rpm. 

Rotation Speed Q, rpm 

Effects of transverse mass mz = 0.01g in case C. ild = 175.5 

0 . 6 

1080 1090 

Rotation Speed Q, rpm 
(a) 

r r i j=m z l 

/̂1 
mz=mz2 

t 

\V;2-mode £ 5 . 5 

Z 5 .4 

1" 
Z 5 .2 

0 1 2 3 

Transverse Mass mz, g 

(b) 

Fig. 3(a) Effects of transverse mass mz = 0.1g in case A. ild = 1092.1 
rpm. (b) Eigenfunction expansion approximations at !i = 1090 rpm. 

Rotation Speed CI, rpm 

Fig. 5 Effects of transverse mass mz = 0.05g in case D 

a 
a. 
13 
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* - 0 . 
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X 
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i 
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Rotation Speed O, rpm 

Fig. 6 Effects of transverse stiffness kz = 0.1 N/m in case A 
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8 4 5 850 855 

Rotation Speed Q., rpm 

( a ) 

Transverse Stiffness k , N/m 

(b) 

Fig. 7(a) Effects of transverse stiffness kz = 1N/m in case B. n„ = 
849.1 rpm. (b) it = 850 rpm. 

' 1 0 9 0 1 0 9 5 

Rotation Speed £2, rpm 

Fig. 8 Effects of transverse damping cz = 0.01 Ns/m in case A 

that their natural frequencies are closest to the frequency range 
of interest. It is found that the sequence of approximations 
converges monotonically to the finite element solution, the 
dashed lines. Fur thermore, it is noted that even a simple two-
mode approximation displays the important characteristics of 
the eigenvalue changes, i .e., the existence of a region between 
mzi and mz2 in which two neighboring natural frequency loci 
merge and one of the modes becomes unstable. 

The results presented in Fig. 4 through Figs. 10 are obtained 
by the finite element method, except those in Figs. 1(b) and 
10(6). The dashed lines in Fig. 4 are the natural frequency loci 

. 5 I 1 1 1 
1 0 8 0 1 0 9 0 1 1 0 0 1110 

Rotation Speed Q., rpm 

Fig. 9 Effects of friction force F, = 0.004N in case A 

•-0 . 2 I 1 1 1 1 
847 8 4 8 8 4 9 850 8 5 1 

Rotation Speed £2, rpm 

( a ) 

Friction force Ffi, N 

(b) 

Fig. 10(a) Effects of friction force F, = 0.004N In case B. n0 = 849.1 
rpm. (b) Eigenfunction expansion approximations at tl = 850 rpm. 

ige of modes (0,2)6 and (0,1)6 for the freely spinning disk. These 
ms two modes are degenerate at Qd = 175.5 rpm, corresponding 
he to point C in Fig. 2. The solid lines correspond to the case of 
'O- mz = 0.01 g. It is seen that these two loci veer away from each 
of other in the u-Q plane and the degenerate natural frequencies 
en separate with one remaining unchanged at point C and the 
Dei other decreasing. No instability occurs in this case, since the 

real part of \mn remains zero, 
ed Figure 5 shows the effect of mz on the natural frequencies 
nd in the neighborhood of the intersection of two reflected waves 
Dei (0,3) r and (0,4)„ corresponding to point D in Fig. 2. The solid 
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lines correspond to the case of mz = 0.05 g, and it is seen that 
mass causes these two loci to veer away from each other, as 
in the case of two backward waves, point C. 

In the neighborhood of the intersection of a backward wave 
and its complex conjugate pair, as for point B in Fig. 2, it is 
found that mz has very little effect on the natural frequencies, 
and no instability is induced. 

In order to understand the mathematical structure of these 
phenomena, we look into the details of the two-mode ap
proximation. Assume for the freely spinning disk that the two 
neighboring modes of interests are w°mn and w°pq with natural 
frequencies wm„ and wpq, respectively, 

<,„^Rm„(r)eM 

u>nq = »̂ it is easy to verify that X = iu is a root of Eq. (11), 

< , = i?P9(/V ,iq0 

For convenience, we define some constants 

!

b nb 

R2
m„(r)rdr, R*pq = R% 

(r)rdr 

Smn = R*mn(umn + nQ,)Rlq(i), Spg = R*pq(copq + qQ)Rin^) 
which will be used throughout. For this two-mode approxi
mation, Eq. (10) now becomes a quadratic equation in the 
eigenvalue X, 

(11) 

where 

(12) 

(a0 + c*ie)X2 + ((30 + i8ie)X + To = 0 

a0 = 16ir2a}mnwPg(wmn + nQ)(wpg + qQ )R*mnRpq 

«i = 4iro)m„Wpg£(um„Spg + upqSm„) 

ft = - 47T/WL<4,£ (Smn + Spq) 

70 = - UmnUpqCt0 

_ mz 

' Phi 

ao» ai, 70 are real and /30 and 01 are purely imaginary. The 
solution of (11) can be written in terms of the parameter e as 

„ - (flo + Pic) ± [(ft, + M2~ 47o(<*o + ttie)]1/2 „„ 
A ± = — • - (13) 

2(o;o + aie) 
This defines X±(e), where e must be real and positive. In order 
to understand the mathematical structure of X, it is convenient 
to allow e to be complex and consider X± as functions of the 
complex variable e, which are analytic except at the zeros of 
the square root term. The square root branch points of X±(e) 
are 

where 

S±-

e± —S± (^pq—^mn) 

4nSm„Spq 

(14) 

,±i-'4Sp~q)
1R2

mn ($)Rlq(Z) UmnUpqt-

In case A where w°m„ is a backward wave and w°pq is a reflected 
wave, we have n > 0 and q < 0. According to Chen and Bogy 
(1992), it is found that S„„ > 0 and Spq < 0. Therefore, S± 
are real and negative. When fi < Qd, it follows that wpq < 
wm„, and consequently, the branch points e± are real and 
positive. We choose le_ I < le+ I. When e is real and in the 
region (e_, e+), which corresponds to (mzU mz2) in Fig. 3(b), 
the imaginary parts of the eigenvalues X_ and X+ are identical 
and their real parts have opposite signs. When e is real and 
outside the region (e_, e+), the real parts vanish and the im
aginary parts are different. On the other hand, when fi > Ud 
the branch points are real and negative, and consequently no 
merging occurs. In the special case that Q = Qd and o)mn = 

and the other root is 
ICtoU 

This verifies the observation 
oio + one 

that one of the degenerate eigenvalues remains unchanged and 
the other changes. If the perturbed eigenvalue is written in the 
form of a power series in e, as is the usual procedure in per
turbation theory, it is obvious that the radius of convergence 
of the perturbation series is equal to le_ I. From Eq. (14) it 
can be seen that this radius of convergence approaches zero 
as ojpq - wm„ approaches zero. In particular, when wmn = wPq 
the radius of convergence vanishes and the perturbation prob
lem becomes singular. 

In case C both w°mn and wpq are backward waves, and n > 
0, q > 0, Sm„ > 0, Spq > 0. As a result S± are complex 
conjugate pairs and so are e±. Since the e associated with the 
physical mass mz is changed along the positive real line in the 
complex e-plane and the branch points e± are complex, the 
square root term in Eq. (13) is always nonzero and purely 
imaginary. Consequently, X+ and X_ remain purely imaginary 
and distinct and no frequency merging occurs. Again, at 0 = 
Qd and o>mn = copq = u, the two eigenvalues are io> and 

a0 + aie 
In case D, both w°m„ and wpq are reflected waves, and n < 

0, q < 0, Smn < 0, Spq < 0. Again, S± are complex conjugate 
pairs and so are e±. Therefore the conclusion in the preceding 
paragraph applies equally well to this case 

In the final case B, w, 
complex conjugate, wp, 

mn is a backward wave and wpq is its 
= vPmn, and cdm„ = -o), 'PI- 0o and 0 

vanish and the eigenvalues are then readily obtained as 

X ± = ±z" 
2TTCO„ 

27rSm , (€)« 
where Sm„ is positive. Apparently, X± are purely imaginary 
and no instability is induced. Both of the degenerate eigen
values with o = 0 remain zero, and the critical speed is not 
changed by mz. 

Effects of Transverse Stiffness kz 

In cases when the eigenvalue of interest is well separated 
from the others, kz tends to increase the natural frequencies 
of the forward and backward waves but decrease the natural 
frequency of the reflected wave, just opposite to the effect of 
mz. Similar to the case of mz, these rules are not applicable 
when the eigenvalues are almost degenerate. Figure 6 shows 
the effect of kz = O.lN/m in the neighborhood where modes 
(0,l)ft and (0,2)r are degenerate. When the rotation speed is 
higher than Qd = 1092.1 rpm, these two natural frequency loci 
merge. On the other hand, no merging occurs when Q < Qd. 
At fid the degenerate eigenvalues separate, with one remaining 
unchanged and the other increasing. These phenomena are very 
similar to those for mz, except that merging occurs on the 
opposite side of Qd. If we fix the rotation speed a little higher 
than 0,;, say at 1094 rpm, and change kz, we observe a region 
of kz between kzi and kz2, in which two natural frequency loci 
merge and one of these two modes becomes unstable. This 
characteristic is very similar to that described in Fig. 3(b), in 
which mz is present and the rotation speed is lower than Ud. 

The effects of kz in cases C and D are the same as those of 
mz. Veering occurs in the co-fl diagram and no instability is 
induced, which is similar to the behaviors described in Figs. 4 
and 5. These observations suggest that the mathematical struc
ture for the effects of kz and mz are very similar in cases A, 
C, and D. 

Around point B, which is the intersection of a backward 
wave and its complex conjugate pair, kz changes the eigenvalues 
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in a unique way. Figure 7(g) shows that the natural frequency 
loci of modes (0,5) and (0,5) merge and one of the modes 
becomes unstable when 0 is higher than the critical speed Qc 

= 849.1 rpm. When 0 < Qc these loci tend to diverge away 
from each other and no instability is induced. In Fig. 7(b) the 
rotation speed is fixed at 850 rpm, a little higher than 0C, and 
kz is changed from 0 to 1 N/m. The dashed and solid lines, 
obtained by finite element method and two-mode approxi
mation, respectively, are almost indistinguishable. It is found 
that when kz is increased to kz, the natural frequency loci 
merge to the value zero. As kz increases beyond k*, the mag
nitude of the real part becomes larger. It is also confirmed, 
through additional calculations not shown here, that a two-
mode expansion is a very good approximation to the finite 
element solution in the cases A, C, and D. 

Analogous to the procedure used to study the effects of mz, 
we next look into the details of the two-mode approximation 
for kz. The eigenvalues X± can be obtained by solving the 
following quadratic equation: 

(ao + a,e)X2 + (/30 + 0i<OX + (70 + yi« + Tit1) = 0 (15) 

where a0, 0o> and 70 are the same as those defined in Eq. (12), 
but «[, /Si, 71, 72, and e are changed to 

ai=4ir^(Spg03pq + 

In this case l< « 21 o>m„ I and 72 is no longer neg-

181 = - 4ir£i[Sm„um„(wmn + 2oipq) + St 

7! = - 2o)m„a)pgai 

72 = (wmn 

'pqWpqiUpq + 2a)„,„ )] 

\2p2 
a) -"-m* (WUM2 

Phi 

The square root branch points of the function X(e) are the 
roots of a cubic equation 

- 472aie
3 + (0? - 47,0:1 - 472a0)e

2 

+ 2(0o0i - 270^1 - 27,a0)e + 0o - 4a07o = 0 (16) 

Since in cases A, C, and D we are interested in the situations 
where com„ is almost equal to w™, or I «„ « lwmnl. 
it follows that 72 is very small. For the purpose of estimating 
the roots of Eq. (16), which are closest to the origin, 72 may 
be neglected so that Eq. (16) is reduced to a quadratic equation. 
In this way the square root branch points of X(e) can be found 
at 

e± = T±(wm„ — upq) 

ligible. Equation (16) can then be reduced to 

X2 = 

For fi higher than the critical speed, to, 
positive branch point 

* -2ircom„(o)m„ + «0)i?( 

^ ™ ^ ^ . (17) 
2ir(um„ + nQ)Rm„] 

< 0 and X(e) has a 

which corresponds to k* in Fig. lib). For e < e*, the bracket 
in Eq. (17) is negative and X± are purely imaginary. On the 
other hand, for e > e*, X± are real numbers. When fi is lower 
than the critical speed, e* is real and negative and X± are always 
purely imaginary for e > 0. These analyses verify the results 
shown in Figs. 7(a) and 7(b). 

Effects of Transverse Damping cz 

Figure 8 shows the effect of cz = O.OlNs/m on the eigen
values in case A. It is noted that the imaginary parts of the 
degenerate eigenvalues for modes (0,l)b and (0,2)r at Q,d remain 
degenerate, while their real parts separate with one remaining 
zero and the other decreasing. No merging occurs in either the 
real or imaginary parts. Similarly, for cases B, C, and D we 
observe that the imaginary parts of the degenerate eigenvalues 
remain degenerate and unchanged, while the real parts separate 
with one remaining zero, and the other decreasing, increasing, 
or remaining unchanged, for cases C, D, and B, respectively. 
Again, it is verified through additional calculations that a two-
mode approximation is satisfactory in the case of cz. 

Based on the two-mode approximation, it is found that for 
0 = firf and wm„ = wpg = a), the perturbed eigenvalues are ia 

and e + iu, where a0 is defined in Eq. (12) and 0i is 
ao 

changed to 
01 = 4lTWmnWpq%(SmnWpq + Spq03m„). 

It is obvious that the imaginary parts of the eigenvalues remain 
unchanged at /co, one of the real parts vanishes and the other 

real part changes to e. In case A, a0 is negative and 0i 

can be negative or positive, depending on the absolute values 
of Sm„ and Spq. Consequently, the other real part may decrease 
or increase, depending on the mode shapes of modes (m, ri) 
and (p, q). In case C, both a0 and 0i are positive and the other 
real part becomes negative. In case D, a0 > 0 and 0i < 0 and 

where 

4ira0%[2um„upq(Sm„-Spq) - (o)mnVSmn±io)pq\]Spq) ] 
1 + Wpo (o>pq — 2um„)Spq] + 8wm„co„„(w,„„ — cof Wmn(u>m„-2upq)S 

It is noted that the second term in the denominator is very 
small compared to the first term because (com„ - upqf is neg
ligible. In case A, where wmn is a backward wave and wpq is 
a reflected wave, Smn > 0 and Spq < 0. In general, the absolute 
values of Sm„ and Spq differ significantly because they are 
determined by different modeshapes. Consequently, the bracket 
term in the numerator is real and positive. Now since a0 is 
negative in case A, both T+ and r_ are real and negative. 
When n > Qd we have wm„ < o>pq and the branch points e± 
are real and positive. When e is real and in the range (e_, €+),• 
the imaginary parts of X± coincide and merging occurs, similar 
to the case of mz with Q < Qd. On the other hand, when Q < 
0d, T± are real and negative and no merging occurs. In both 
cases C and D, T± are complex conjugates and so are e± . The 
analyses and conclusions are then the same as those in the case 
of mz. 

In the final case B, for which a backward wave (m, n)b meets 
its complex conjugate at the critical speed, 0o and 0i vanish. 

q)
2S, mn^pq 

the other real part becomes positive. In case B, 0i vanishes 
and both real parts remain zero. These analyses agree with our 
numerical observations. 

Effects of Pitching Parameters 
Numerical results show that the effects of pitching param

eters are almost the same as their transverse counterparts, 
except that there is no interaction between two modes when 
one of them has no nodal diameter, i.e., n = 0. This is not a 
surprise if we examine the two-mode approximation. It can be 
shown easily that the procedure we have gone through for the 
transverse parameters applies almost in the same manner for 
the pitching parameters, except that we now replace Rm„(£) 
and Rpq(£) by nRmn(£) and qRpq(£), respectively. Moreover, 
when one of the two modes has no nodal diameter, the off-
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diagonal terms of H2 in Eq. (10) vanish and no modal inter
action is induced. 

Effects of Friction Force Fe 
Figure 9 shows the effects of Fe = 0.004N on the eigenvalues 

in case A. It is noted that the imaginary parts of the degenerate 
eigenvalues for modes (0,l)b and (0,2),. at 0^ remain degenerate 
and unchanged, while their real parts separate with one re
maining zero and the other decreasing. No merging occurs in 
either the real or imaginary parts. Similarly, as long as Fe is 
small enough, we observe the same phenomena for cases C 
and D. In case B, however, friction force exhibits some unique 
effects on the behavior of eigenvalue changes. Figure 10(a) 
shows that for Fe = 0.004N, there exists a range of rotation 
speed immediately around the critical speed flc = 849.1 rpm, 
in which the natural frequency loci of modes (0,5) and (0,5) 
merge and remain zero, while the real parts separate. When fl 
= flc, one of the real parts remains zero and the other becomes 
negative. In Fig. 10(6) the rotation speed is fixed at 850 rpm 
and Fe has the range 0 to 0.01N. The dashed lines, which are 
the finite element solutions, show that the natural frequency 
loci start to merge as Fe increases to F*e and remain so as Fe 
continues increasing. The real parts coincide and remain neg
ative for Fe < Fl, but separate for Fe > Fg. As FB increases 
to a very large value, it is found that the upper branch of the 
real part loci approaches zero. When we try to use eigenfunc
tion expansion to reproduce the dashed lines by choosing the 
eigenf unctions with the smallest eigenvalues, we observe that 
the approximation deteriorates as the number of modes used 
in the expansion increases, as shown by the solid lines in Fig. 
10(6). However, if we choose only the four modes (0,5)n (0,5)r, 
(0.5)/, and (0,5)/in the expansion, the result of this four-mode 
approximation agrees very well with the dashed lines, although 
the natural frequency of (0,5)/, 110.7 Hz, is very large com
pared to the frequency range of our current interest. This 
phenomenon is also observed in cases A, C, and D. Conse
quently, a two-mode approximation can no longer exhibit all 
the important features of the eigenvalue changes in the case 
of friction force, but a properly chosen four-mode approxi
mation is very good. 

Conclusions 
Modal interactions in a spinning disk-stationary load system 

are studied by use of a numerical finite element method and 
by an eigenfunction expansion method. Their mathematical 
structures are analyzed in detail by considering a two-mode 
approximation. The results can be summarized as follows: 

(1) In the cases of A, C, and D, as shown in Fig. 2, for a 
transverse mass mz there are two branch points e ± associated 

with the eigenvalues as functions of e = —rr on the complex 
phi 

e-plane. In case A, e± are real and positive when fl < Qj. 
Frequency merging occurs and instability is induced when e 

lies between e+ and e_ along the real line. If fl > fld, e± are 
real and negative and no merging occurs. In cases C and D, 
e± are complex conjugate pairs, no merging occurs but there 
is frequency veering. 

(2) In the case of a transverse stiffness kz, there also exist 
two branch points e± for cases A, C and D. In case A, e± are 
real and positive when fl > fld, but negative for fl < Qd, just 
opposite to the effect of mz. In cases C and D, e± are complex 
conjugate pairs. In case B, there exists a single real branch 
point e*. For fl higher than the critical speed and e > e*, 
merging occurs and instability is induced. 

(3) In all the cases of A, B, C, and D, for a transverse 
damping cz the imaginary parts of the degenerate eigenvalues 
remain degenerate and unchanged, while the real parts separate 
with one remaining zero and the other changing, except for 
case B, in which both real parts remain zero. No merging occurs 
in either the real or imaginary parts of the eigenvalues. 

(4) The effects of the pitching parameters are almost the 
same as their transverse counterparts, except that there is no 
modal interaction if one of the modes has no nodal diameter. 

(5) In cases A, C, and D, for friction force F9 the imaginary 
parts of the degenerate eigenvalues remain degenerate and 
unchanged, while the real parts separate with one remaining 
zero and the other changing. No merging occurs in either the 
real or imaginary parts of the eigenvalues. In case B, however, 
there exists a range of rotation speeds immediately around the 
critical speed in which the natural frequency loci merge and 
remain zero, while the real parts separate. Unlike the transverse 
and pitching parameters, at least four modes are required in 
the eigenfunction expansion to reproduce the characteristics 
of the eigenvalue changes due to friction force. 
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A Solution Procedure for Laplace's 
Equation on Multiply Connected 
Circular Domains 
A solution procedure is presented for the two-dimensional Laplace's equation on 
circular domains with circular holes and arbitrary boundary conditions. The shape 
functions use the traditional trigonometric Fourier series on the boundaries with a 
power series decay into the domain thereby satisfying the governing equation ex
actly. The interaction of the boundaries is expressed simply and exactly resulting in 
quick processing time. The only simplification made is the use of a finite number 
of terms in the boundary conditions. The results are compared with a Green's 
function method due to Naghdi (1991) and a Mobius transformation method due 
to Honein et al. (1991). 

1 Introduction 
One of the more challenging problems in the field of solid 

mechanics is the determination of stresses in thin-walled shell 
structures. These problems are particularly nettlesome in the 
traditional framework of finite elements because the thinness 
of the shell acts as a constraint and the presence of boundary 
layers requires extremely fine meshing as shown by Mansouri 
(1991) resulting in considerable setup and run time. Another 
approach is that of Simos and Sadegh (1989) who suggest using 
a boundary integral method for these problems. However, the 
Green's functions for anything other than a spherical or cy
lindrical shell would be difficult to find and implement. Al
ternatively, asymptotic-Fourier series methods have been 
successfully used for shell intersection problems by Steele and 
Steele (1983). These procedures work well and avoid the prob
lems of other methods. The main restriction of the asymptotic 
procedures is that they have been restricted to problems of no 
more than one intersection. In order to handle a more general 
class of problems it is necessary to deal with multiple inter
sections. Before delving into the complexities of shell theory, 
though, it is good to develop the basic principles for a simpler 
problem, i.e., Laplace's equation in two dimensions. The fol
lowing is an analysis of steady-state heat conduction on a 
multiply connected domain using a Fourier series procedure. 
Numerical results are compared with those of Naghdi (1991) 
and Honein et al. (1991) for Saint-Venant flexure of bars and 
antiplane elasticity, respectively. 
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The basic concept is that prescribing a given harmonic of 
the temperature function on one boundary has an effect on 
all other boundaries which can be computed explicitly. The 
interactions between the holes presented here for Laplace's 
equation are analogous to Graf's addition theorem of cylin
drical functions for Bessel's equation (see Abramowitz and 
Stegun, 1965). It is also analogous to the "self-consistent" 
procedure of multiple scattering set forth by Twersky (1953, 
1962). However, Twersky solves the reduced wave equation 
and retains only the first two terms while considering a few 
boundary conditions whereas the following analysis is of La
place's equation with all the terms retained for arbitrary 
boundary conditions. The method is also in some ways similar 
to a boundary integral method, or it could be called a Trefftz-
type finite element procedure where the discussion is for a 
single element (see Jirousek, 1978). 

2 Analysis 
Consider a circular domain with an arbitrary number of 

circular holes as shown in Fig. 1. The boundaries and radii 
are numbered from zero to the number of holes NH beginning 
with the outermost. The steady-state heat equation on this 
domain subject to prescribed temperature distributions on the 
boundaries is written 

V T = 0 (1) 

and the temperature T at boundary number j will be denoted 
TU)(Rj, Oj). 

Finite Plate With no Holes. Consider first a circular plate 
without holes of (dimensionless) radius R0 and a prescribed 
temperature at the boundary equal to A°(R0, do)- (A is used 
for a plate with a single boundary, T for one with multiple 
boundaries). Since the temperature must be periodic about the 
boundary, the boundary condition can be written as a Fourier 
series: 
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(0) 

Fig. 1 Circular plate with circular holes; temperature prescribed on 
boundaries 

Fig. 2 Finite plate with boundary temperature 4(0>. Expand temperature 
on circle k. 

Am(R0,d0)=Ai0) + a\0)sme0+AT)cos60 + af)sm260+... (2) 
which is assumed to converge uniformly. The temperature 
everywhere in the plate, requiring regularity at the center, is 

A®\r0A)=A$)+J] (4-) [a<%-o"sinn0o + 4OVo"cosn0o) 

Fig. 3 Infinite plate with boundary temperature A'11. Expand tempera
ture on circle k. 

and c = complex vector from the center of the plate to the 
center of coordinate system k divided by the reference length 
L. It is seen, after taking real and imaginary parts of Eq. (9), 
that the coefficients of the two series are related 

D&0) = ̂  [«<0)Im(O + 40>Re(c")] (12) 

dLkf=fJ^T- [a™Re(c-"<)-A«Hm(c»-">)} (13) 

D™ =f-^ [40)lm(c"-"') +4°)Re(C"-'")] (14) 

for m, nj*0. The constant term (« = 0) simply gives 
'(0,0) D%J8>=A$> 

R, 

where 
(3) 

Ro = radius of the plate/L 
r0 = distance of a point from the center of the plate/Z, 
L =a reference length. 

A transformation of coordinates is now performed from the 
(/o, #o) coordinate system to the (rk, 8k) coordinate system as 
shown in Fig. 2 to give 

A^\r0A) = D^°\rk,dk) (4) 
where 

J > ( M W * ) = £ W + S [dWrTsinmOt 

+ D^)r^cosmdk][. (5) 

To determine the exact relationship between the coefficients 
of the two series, the transformation is carried out explicitly 
as follows considering the «th term of the series A^i/a, 6Q): 

(6) 

(7) 

(8) 

(9) 

/•8cos«0o = Refe8] 

/•osin«0o = Im[zol 
z"o = (c+zk)

n 

m = l \ C -

Single Hole in an Infinite Plate. The next step is to consider 
a hole in an infinite plate with a temperature distribution pre
scribed at the edge of the hole Au)(Rjt 6j). The boundary 
condition is written as a Fourier series 

Au\Rj,ej) = A(
0
J) + a\J)sm8j+AlJ)cos6j + a|y')sin20/+ ... (15) 

and the temperature everywhere in the plate is written 

Au\rj,dj)=Ay) p ^ + 2 RnaPrpsmnej 

+ AX)rJ-"cosnej] (16) 
where log denotes the natural logarithm. Again, a change of 
coordinates is performed—this time from the (r,, 6j) system to 
the (rk, 6k) system assuming rk< Ic\ as shown in Fig. 3 to give 

Au\rj,dj)=D{kJ\rk,dk) (17) 
where 

DlkJ\rM = S W>"J) + S [d^f^sinmd, 
n = 0 \. m=l 

+ D^)^cosmdk]l. (18) 

The transformation is carried out in the Appendix which gives 
the relationship between the two sets of coefficients 

D^il)=R]la{/)ha(c-H)+A^Reic-H)] (19) 
AkJ) _ nn R]g(m,n)[-ak"Re(c 

„-(M + m) 

D«f =R?g(m,n)l - a^Imfc" <"+"") 

where 
where 

/(«,«) = 

Zk = rk(cosdk+ismdk) 
n(n-l)...(n-m + \) 

ml 

(10) 

(11) 

g(m,n) = (-1)" 

A{„j)Im(c-{n+m))] (20) 

+A(„j)Re(c-{n+m))] (21) 

«(« + !)...(« + /M-1) 

ml 
(22) 

for n ?*0. The logarithmic term (n = 0) is also expanded in the 
Appendix giving 
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Fig. 4 Infinite plate with boundary temperature Am. Expand tempera
ture on circle 0. 

D{
0
kJ\rkA) = < o J > + S [dfflrfsmmOt 

m = \ 
+ D{

m
kfr^cosmdk] (23) 

where 

Dk 
' logRj 

,(W> «o;> ( - 1 ) rl^'Jl — "m,0 — 
logRj m 

log I c I 

Im(c~~m) 

/iy) r _ n m 

flffiS ° ( } Re(g-") log-R, m 

(24) 

(25) 

(26) 

There is now one more set of expressions to be found. Given 
an infinite plate with a single hole j at which the temperature 
is prescribed A{J\Rj, 8J), the boundary condition and solution 
can be written as in Eqs. (15)—(16); but this time the trans
formation is from the (/•_,-, 6J) system to the (r0, 0O) system where 
\c\<r0. The result (see Fig. 4 and the Appendix) is written 

Oo ( oo 

n = 0 Vm = n 
^ V o A H E I S ldJSfromsinme0 

+ D£;pr0-
mcosm60]\ (27) 

where 
d(0J)= U)Rn 

1Jn,n —s*n Kj 

(28) 

(29) 

^mi ) =^"g( '« -n .«) [ay > Re(c m - " )+^y ) Im(c m - " ) ] (30) 

D^=R]g(m - n,ri)[-a^\m{cm-")+A{
n
i)Rt{cm-")\ (31) 

for n T*0 and finally, for the logarithmic term, 

+£>^Vo-mcos/K0o] (32) 

where 

D, (0j) _ A (j) ^ g ^ O 
log/?, '0,0 

<4Y = 4J,) (-D" 
logi?7 m 

AP ( - 1 ) " 
log/?, m 

Im(cm) 

Re(cm) 

(33) 

(34) 

(35) 

(see the Appendix). 

Superposition. The original problem of a circular plate 
with various circular holes can now be thought of as being 
imbedded in an infinite plate with the boundary temperatures 

Tu)(Rjt 6J) prescribed on circular paths of radius Rj where 
y' = 0, ..., NH. The solution is then the sum of the above ex
pansions 

NH 

Tw(Rk,dk)=A{k\Rk,dk)+J] D{kJ\Rk,6k) (36) 
y = 0 

but since the D(k'})(Rk, 8k) are simply linear functions of the 
A{,k), kjtj, it is possible to write the TU)(6j) as a linear com
bination of the A(k) as shown in Eq. (37) (provided we include 
only a finite number of coefficients, NC, which need not be 
the same on all boundaries in the various Fourier series): 

(T) = [TM]{A) (37) 

where 

T 
TM 

prescribed temperature on the boundaries, 
the temperature matrix, the entries of which are 
essentially the terms of the various sums above, 
and 

A = the infinite domain vector defined above. 

In a similar manner, the normal derivative of the temperature 
field can be computed along a circular path in a finite plate, 
or in an infinite plate with a single hole. A set of equations is 
obtained which can be written in matrix form 

(F) = [FM](A) (38) 

where 

F 
FM 

the flux across the boundaries, 
the flux matrix, the entries of which are essentially 
derivatives with respect to rk of those of [TM] 
multiplied by the thermal conductivity and plate 
thickness, and 

A = the same infinite domain vector as before. 

In a Dirichlet-type problem, T is specified, TM and FM are 
computed from the relative sizes and positions of the holes, 
and A is found to satisfy T and substituted into Eq. (38) to 
compute the fluxes at each boundary. Having A, it is straight
forward to compute the temperature and flux at an arbitrary 
point in the domain by summing the effects of the AiJ) at that 
point. This field point method is similar to that used in bound
ary integral methods. For a Neumann-type of problem, F is 
specified and TM and FM are computed from the geometry. 
However, (F) =[FM](A) cannot be simply solved for A be
cause FM is singular. This difficulty can be overcome by elim
inating the row and column of the matrix which correspond 
to uniform heating (rigid body motion in solid mechanics). 
The remaining system of equations can be solved and substi
tuted into Eq. (37). Using this procedure two things are ac
complished: 

1 The Neumann condition is satisfied exactly. 
2 The column of zeroes in the flux matrix is eliminated. 

For a problem of mixed type, where some of the boundaries 
have temperature prescribed and others have flux prescribed, 
the two equations can be combined to get: 

1 | T 1 {F) = [FM][TM]-

or 
{F)=[K]{T} (39) 

where K is the conductivity matrix (the analog of the stiffness 
matrix of solid mechanics). This system can be partitioned and 
solved using various methods common in finite element anal
ysis. 

3 Convergence 
It is of interest at this point to verify that the various se

quences of terms generated are convergent. That is, in order 
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to solve a problem, a finite number of terms in each expansion 
is used and it must be possible to make the error due to trun
cation arbitrarily small. From Eq. (14) we see 

(mn(n-l)...(n-m + l) (Rk} DimR 

Osm</i, k*0 (40) 

n fixed, m—n (41) 

D™R%~A%mU) , m fixed, II-OO (42) 

which converges in both limits given that the A^ represent the 
coefficients of a uniformly convergent Fourier series since the 
distance between the center of a plate and the center of a hole 
in the plate is always smaller than the radius of the plate. 
Similarly, from Eq. (21) we see 

n(n + \)...(n + m-\) (Rj\m(R-
m\ \c) \ 

0<m, «<oo,y>£0 (43) 

( -1 ) " 

D^Rf-A^i-iy R, 

RJ 

, n fixed, m^oo,j^0 (44) 

D^;pRk~An
j)(- l)mnm(-^) , m fixed, w-oo.yVO (45) 

D^RT-
Ak U) Ri 

, lSOT^oo.y '^O, k (46) 
(-m)m\o%Rj \ct 

all of which are convergent since, for unencircled holes, the 
distance between the hole centers is greater than either of the 
hole radii. Looking at the last set, i.e., Eq. (31), we see 
1Jm,n -"0 •f*n 

(-D' 
n(n+\)...{n + m-\) I c_\ Rj m /r. \ n 

D{0J)Rr' 
IJm,n Rk 

AM-iy 

D^R^-AX'i-l) 

\Ro/ \c. 
1<«<OO, n<m<<x (47) 

n fixed, m—oo (48) 

m fixed, «—•m (49) 

(OJ)n-m. DJSfRi 
(-m)m\ogRj \R0 

— I , 0 < w < o o (50) 

and, again, these converge because the radius of the plate is 
always greater than the radius of a hole in the plate, as well 
as the separation between a hole and the center of the plate. 

It was previously noted that one might wish to retain dif
ferent numbers of terms on the different boundaries. For ex
ample, to maintain uniform accuracy everywhere, more terms 
need to be retained on the boundaries which are closer to one 
another than on those which are greatly separated. The pre
ceding expressions can be used to estimate, in advance, how 
many terms need to be retained. 

It is also clear that the reference length L must be chosen 
such that Rj&l for ally. Otherwise, \ogRj = 0 and the expres
sions would become meaningless. Jaswon (1963) has shown 
that this condition is generally required for multiply connected 
domains. 

Fig. 5 Antiplane deformation of a large plate with traction-free holes 
and out of plane stress applied on the outer boundary 

4 Error Estimation 
The Fourier series procedure satisfies the governing equation 

exactly. The only errors introduced by the method are the 
truncation error due to using only a finite number of terms in 
the boundary conditions and the roundoff error due to the 
finite floating point precision of a digital computer. Since each 
of the terms in the Fourier series expansions decays moving 
from the boundary into the domain, the truncation error due 
to ignoring some of their contributions decays as well (Saint-
Venant's principle). This produces an interior region in which 
the solution is orders of magnitude more accurate than it is 
on the boundary (see Jirousek, 1989). Since the maximum error 
is on the boundary, the error can be estimated, for a Dirichlet-
type problem, by computing the temperature and flux on the 
boundary using the field point method and comparing with 
the prescribed temperature and the flux computed from the 
flux matrix. The maximum discrepancy for each is then an 
upper bound on the error of the calculation. If the error for 
either is too large, the problem can be run again retaining more 
terms on the boundaries for which greater resolution is desired. 

5 Results 
For the case of a single hole in the center of a circular plate, 

exact solutions can be found. Compared with these, the results 
using this procedure, encoded in single precision FORTRAN 
for either Dirichlet or Neumann conditions, are accurate to 
seven or eight decimal places when the ratio of outer to inner 
radius ranges between 1.01 and 1000. For a ratio of 1.0001, 
only a five place accuracy is attained. 

For the less trivial case of nonaxisymmetric geometry we 
compare, with the results of Honein et al. (1991), for the case 
of antiplane strain of an infinite domain with two circular 
holes near one another as shown in Fig. 5. To approximate 
Honein's infinite plane with a uniform antiplane stress azy at 
infinity, a plate of finite radius with a shear at the outer bound
ary czr = sin0 is used and the results are examined as the outer 
radius gets large. It is observed that the hoop stress on the 
hole at the center of the plate approaches that for the infinite 
domain as the radius of the plate gets large as shown in Fig. 
6. Notice that the results for RQ=15 and those for the infinite 
domain agree to three figures so the difference cannot be dis
cerned in the plot. This behavior is typical for the geometries 
considered by Honein. 

It should be noted that Honein's procedure, while entirely 
analytical in nature, is restricted to the special case of two 
holes in an infinite domain. To extend the procedure to include 
additional holes or an outer boundary would be challenging. 

In addition, our results have been compared with Naghdi's 
(1991) for Saint-Venant flexure of beams (see Sokolnikoff, 
1956) as shown in Figs. 7-9. Naghdi defines the stress con
centration Sr as 
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Fig. 9 Comparison of stress concentration at point B due to Naghdi 
and the Fourier series procedure for 9 = 3x78 

Fig. 7 Saint-Venant flexure of circular beam with four symmetrically 
located circular holes. Compute stress concentration at B. 

Fig. 10 Saint-Venant flexure of a circular beam with two circular holes. 
Maximum stress concentration is at point P. 

0.4 0.5 0.6 0.7 

Fig. 8 Comparison of stress concentration at point B due to Naghdi 
and the Fourier series procedure for 6 = *78 

Two Holes 

Asymptote 

D/d 

Fig. 11 Maximum shear stress in the geometry of Fig. 10 as a function 
of the spacing between the holes compared to the asymptotic value 
obtained when there is only one hole located at the center of the beam 

sc=-
a7VA 
Wv 

(51) 

where A is the area of the beam cross-section and Wy is the 
weight acting in the.y-direction. It can be shown that the stresses 
are subharmonic implying that their maxima are on the bound
ary. Naghdi considers geometries symmetric about both the x-
and >>-axes and concludes the maximum stress concentration 
to be at point B of Fig. 5. He then computes the stress con
centration at point B for various geometries. Figures 8 and 9 
compare values of Sc computed using the Fourier series ap
proach with those reported by Naghdi for i?0= 10, Rt= 1.2, 
Poisson's ratio = 0.3 and various values of a. It is seen that 

the two approaches disagree by as much as 11 percent. The 
grounds for this discrepancy have not yet been identified. 

The examples using the Fourier series approach ran in an 
average of 1.51 seconds CPU time and 51.0 seconds user time 
including setting up all the input files on a Systems Concepts 
SC30M digital computer. For most examples, six terms in each 
of the sine and cosine series on each boundary were sufficient 
to yield an estimated error of less than 0.05 percent. For several 
geometries, 64 terms were retained on each boundary to give 
an estimated error of 1.0 e-11 percent. 

An advantage of the Fourier series approach over that of 
Naghdi's is that it permits arbitrary hole location and size. The 
case of two holes located near the center of the beam, as shown 
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Fig. 12 Contour plot of Sc for geometry of Fig. 10 for Did=0.0625 

Fig. 13 Detail of Fig. 12 

in Fig. (10), is considered. As the distance between the holes 
grows, the stress concentration approaches that for the case 
of a single hole in the beam as shown in Fig. (11). Contour 
plots of Sc for the case of closest approach (D/d= 0.062) are 
presented in Figs. (12) and (13). It is observed, for this hole 
arrangement, that when the distance between the holes is greater 
than twice the diameter of the holes, the coupling of the holes 
is negligible. Dozens of examples have been run using between 
two and five holes located and sized arbitrarily and it appears 
that the critical ratio of separation to diameter from Fig. (11) 
can be applied to general problems. 

i 

6 Conclusions 
The method presented is shown to agree very well with the 

alternative analytic method of Honein while providing greater 
generality in that circular holes of arbitrary size, position, and 
number can be handled in a single, consistent framework. The 
Fourier series procedure requires no mesh generation and the 
stiffness matrix is assembled directly which implies it would 
be faster than purely numerical procedures such as finite dif
ferences or finite elements. It is not clear that there is a sig
nificant advantage over boundary integral methods in either 
ease of operation or run time. However, boundary element 
methods frequently give very high condition numbers for the 
system of equations to be solved. The method presented here 
produces systems of equations with condition numbers which 
appear to depend primarily on the number of holes and are 
nearly independent of the number of terms used and the spacing 
of the holes. For the Saint-Venant flexure examples with four 
holes, the condition number ranged from 17 to 22. In addition, 
the Fourier series procedure shows tremendous promise for 
thin shell intersection problems (see Steele and Steele, 1983). 

The method can be extended to handle plate bending (see 
Bird and Steele, 1991) and problems involving circular material 
inclusions. In addition it should be fairly straightforward to 
extend it to plane elasticity and deformation of thin, shallow 
shells. 
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A P P E N D I X 

Expansions for a Single Hole in an Infinite Plate 
To expand the series prescribed on the holey onto the circular 

path k, (provided k does not enclose J), consider the following 
for the nth term in the expansion 

z,-" = (c + z*)-" 

Zk 

c 

zr"=c~"+c -s n(n + l)...(n + m-l) (-Zk 
ml 

Zj-n = c-" + c-"J] g(m,n) 

2T" = c _ " + S *(m.«)c"(m+B)«*. 
m = l 

Taking the real and imaginary parts yields Eqs. (19)-(22). 
The expansion for the logarithm is a little different in that 

. it requires an integration as follows: 

log(i>) = Reflog(z,)] 

logfe)- p 
J Zj 

1 1 
Zj C + Zk 
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ZJ C m = 0 \ L 

y c z - ' m \ c 

where 
c-i = constant of integration. 

To evaluate cit set Zj = c giving 
log(c) + Ci = 1 

so 

log(̂ ) = 7 - S ( - 1 ) " + log(c)-l 

i A* 
tog^-^-SC-D'i 7 + l 0 ^ ) - 1 

m = n+ 1 

Taking real and imaginary parts gives Eqs. (28)-(31). 
The expansion of the logarithmic term again requires an 

integration as shown. 

I 1 1__ 

I = v (_c)m 

= 1 VW izj-c)" 

10g(jZ/) + C2 = 10g(Zy - C) - 2 
( - C ) " 

log(Z ,)=-S(-l)m^(f) +log(0. 

Taking the real part then gives Eqs. (24)-(26). 
To expand the series prescribed on the holey onto the circular 

path k, provided k does enclose j , consider the following for 
the «th term in the expansion 

Zy-" = (Z* + C ) - " 

^ m{Zj-cT 

where 
c2 = constant of integration 

To evaluate the constant, let c = 0 which gives c2 = 0. Thus, we 
see 

00 1 (-c 
log(z;) = log(zo) - Y! — I — 

and taking the real part gives Eqs. (33)-(35). 
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On Cauchy's Mean Rotation 
In this paper, a new treatment of Cauchy's measure of mean rotation in continuum 
mechanics is given, a representation theorem is proved, and the connection between 
Cauchy's measure and the finite rotation tensor is established. Cauchy's and No-
vozhilov's measures of mean rotation are compared. 

1 Introduction 
The theory of finite rotation of deformable body dates from 

Cauchy (1841). From Section 36 of Truesdell and Toupin's 
book (1960), we can read a modern statement about Cauchy's 
measure of mean rotation. Let [X, Y, Z) be a given Cartesian 
coordinate system and (i, j , k), the orthonormal basis asso
ciated with this Cartesian reference. Let N^=j cos</> + k sin$ 
be a unit vector perpendicular to the .Y-axis, and nx, the de
formation of N^. Then Cauchy's mean rotation angle, denoted 
by dx', about the .X-axis is just taken as the mean value of 
dx—the angle between Ny and the projection of n^ upon the 
Y-Z plane. 

However, despite the elegance of Cauchy's concept, the_rep
resentation formula of Cauchy's mean rotation angle §x has 
been unresolved for about one and a half centuries, since 1841. 
Novozhilov (1948) most happily modified Cauchy's definition 
by putting the mean value tant9y of tant?^ in place of dx. He 
succeeded in evaluating tantV, which has been widely used as 
the measure of mean rotation in the last 40 years. Recently, 
Marzano (1987) evaluated the mean value of costV 

The problem of measures of rotation of a deformable body 
is much more difficult than that of a rigid body, just as stated 
by Truesdell and Toupin (1960, p. 273): "The theory of finite 
rotation has always presented singular difficulty, although the 
essential idea is simple." The rotation of a rigid body can be 
completely described by a rotation tensor or three Euler-Ro-
drigues parameters (Beatty, 1977; Cheng and Gupta, 1989). It 
is a global concept. However, there are many different meas
ures of rotation of a deformable body. Each of them is, in 
general, a local concept and is a mean rotation in a sense. The 
line elements radiating from the same material point of the 
deformable body have, in general, different rotations. 

Perhaps the finite rotation tensor Q in the polar decom
position of the deformation gradient (see, for example, Trues
dell and Toupin, 1960; Gurtin, 1981) is the most important 
one among the measures of rotation of a deformable body. Q 
represents the rotation of the principal axes of strain. Another, 
property related to Q comes from Grioli's theorem (Grioli, 
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1940), which may be read from page 290 of Truesdell and 
Toupin's work (1960): "Let a given homogeneous strain be 
decomposed into a translation, rotation, and a pure strain; 
then the translation and the rotation are precisely those de
fining the rigid deformation whose deviation from the given 
strain is the least possible." Some analogous conclusions to 
Grioli's were obtained by Martins and Podio-Guidugli (1979, 
1980), and some further geometrical meanings of the finite 
rotation tensor may be read from Zheng and Hwang's work 
(1987a, 1987b). _ 

In this paper we succeed in evaluating 0X with quite a simple 
formula. Two approaches are given: One is geometrical and 
related to the rotation circle, another is algebraic. We also 
show that Cauchy's mean rotation angle, evaluated with re
spect to the eigenvector of Q, is actually equal to the rotation 
angle 9 of Q. Furthermore, Cauchy's mean rotation angle can 
be related to a so-called projection polar decomposition. In 
the end part of the present paper, Cauchy's and Novozhilov's 
measures of mean rotation are compared. When compared to 
Novozhilov's measure, Cauchy's measure has simpler repre
sentation and unrestricted applicability. 

Abstracts of this paper have been published in Chinese 
(Zheng and Hwang, 1988), with English translation (1989). 
Some developments and applications of this paper have been 
done (see Zheng and Hwang, 1987a, 1987b; Xiong and Zheng, 
1989; Zheng, 1989). 

2 Mathematical Preliminaries 
Tensor algebra is the most convenient tool to use in the 

present analysis, and for background, the readers may refer 
to the books of Bowen and Wang (1976), Chadwick (1976), 
Gurtin (1981), Ogden (1984), etc. 

All vectors and tensors belong to a three-dimensional Eu
clidean space. Denote the inner product, vector product, and 
tensor product of two arbitrary vectors a and b by a«b = b»a, 
axb , and a(g)b, respectively; the norm of a, by la I =Va^a. 
We write B r for the transpose of second-order tensor B; trB, 
the trace of B. We call B symmetric if BT= B, skew if BT= - B. 

There is a one-to-one correspondence between vectors and 
skew tensors: Given any skew tensor A, there exists a unique 
vector a, the axial vector of A, such that (Gurtin, 1981, p. 8) 

Av = axv, (1) 
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Fig. 1 Normal plane II, projections dX* and dx*, and deformation ro
tation angle <PP 

for any vector v, and conversely; indeed, 

A2l = -An = a3, A32= -A2i = au Ai3= -An = a2, (2) 
where Ay and ak are the Cartesian components of A and a, 
respectively. By the aid of the expansion theorem of triple 
vector product, 

wx(uxv) = u w v - v w u , (3) 
for any skew tensors A, B and their axial vectors a, b, we have 
ABv = a X Bv = a x (b x v) 

= b a»v-v a«b = (b(x)a-a»b I)v, (4) 
in which I is the second-order identity tensor. This formula 
implies that 

AB = b®a-b«a I . (5) 

In particular, if a skew tensor P has the axial vector p with 
unit norm Ipl = 1, then it follows from property (5) that 

P2 = p ® p - I = (P2)r, P 3 = - P , (if lpl = l). (6) 
For any second-order tensors D, G, symmetric tensor S, and 

skew tensors A, B, the following properties can be easily proved 
(see, for example, Gurtin, 1981, Sect. 1) 

trD r= trD, tr(DG) = tr(GD), trA = tr(AS) = 0. (7) 
And from (5) and (6), we can obtain the useful identities: 

tr(AB)= -tr(A rB)= -2a«b; (8) 
tr(P4D) = tr( - P2D) = trD - p-Dp, (if I p 1 = 1). (9) 

Hereafter, we shall always use the fixed triple (p, P, II) to 
express a skew tensor P with unit axial vector p and the normal 
plane II of p. For any vector v, the projection v* of v on II 
should be 

v*=v-p v p = (I-p(g)p)v= -P2v, (10) 

in which (6) has been used. The projection D* on II of any 
second-order tensor D is defined by u«D*v = u*«Dv*, where 
u and v are arbitrary vectors. From (10) it is obvious that 

D*=P2DP2. (11) 

Because (P2)r=P2, from (11) we know also (D*)T=(DT)*. It 
implies that the projections of any symmetric and skew tensors 
remain symmetric and skew, respectively. Finally, for any vec
tor c of n, since c«p = 0, 

c = c - p c»p=-P2c = c*. (12) 

3 Cauchy's Measure of Mean Rotation 
Consider a deformable body (B moving in a three-dimen

sional Euclidean space. Let X and x be the position vectors of 
the typical material particle of (B with respect to the reference 
configuration and the current configuration of (B, respectively. 
Thus, the deformation dx of the line element dX is given by 
dx = FdX, where F = dx/dX is the deformation gradient. 

Let (p, P, II) be the fixed triple defined in the last section, 
and dX* and dx*, the projections on II of dX and its defor

mation dx. The angle !?p, through which dX* is right-handed 
turned to dx*, is called the deformation rotation angle with 
respect to p (see Fig. 1). Mathematically, we have 

\dx*\\dX*\co&dv = dX*>dx*; (13a) 
\dx*l\dX*\smdp = p.(dX*Xdx*) = (pxdX*)'dx*. (13*) 

Introduce the direction N = dX/\dX\ of dX, then 
dXVldXI = -V2dX/\dX\ = -P2N = N*, 

dx*/ldXl=(FN)*; (14a) 
p=\dx*\ lcrX*l/lcfXI2=l(FN)*l IN'laO. (146) 

Equations (13) and (14) yield 
psim?p= (pxN*).(FN)* = (PP2N)-(P2FN) 

= -N.P 5 FN=-N.PFN, 
p costfp = N * • (FN) * = (P2N) • (P2FN) 

= N-P4FN=-N.P2FN, (15) 

in which the properties (1) and (6) have been used. 
From (15) we also know that for a given deformation gra

dient F and direction p, both #p and p are functions of N; in 
particular, if dX or N belongs to n, then from (12): N = 
N* = -P2N and (15), the deformation rotation angle t?p can 
be evaluated by 

psim?p= -N.PF*N, pcos#p = N.F*N. (16) 
Here, F* =P2FP2 is the projection of F on II. As N is taken 
all directions over II, the mean value, denoted by $„, of the 
deformation rotation angle #„ = $P(N) a s a function of N is 
named the Cauchy's mean rotation angle with respect to p; 
and the mean value, denoted by tan T„, of tan t?p(N) gives the 
Novozhilov's mean rotation angle TP with respect to p. 

Arbitrarily given a constant angle ^o and a direction N0 on 
plane II, any direction N on II can be expressed by 

N = N(<o) = N0 cos(<p - <p0) + p X N0 s'm(<p - p0), 
(-ir<»?<7r). (17) 

Then, t?p and TP can be represented by 

0, 

tanrn ;27rJ_. 

(N(?»<ta 

tani?p(N(<p))efa. 

(18) 

(19) 

4 Representation Theorem of Cauchy's Mean Rotation 
Introduce the additive decomposition of the deformation 

gradient F as follows: 

F = I + E + W. (20) 
Here, the symmetric tensor E, the skew tensor W, and the 
axial vector w of W satisfy 

E = iCF + FT) - 1 , W = 1(F - F7), (21«) 

Wv = w X v for any vector v. (21b) 

Let N be a direction on II. Substituting the projection of (20) 
onll 

F* = I* + E* + W* (22) 
into (16), we can write 

,osini?p=-N«P(I*+E*+W*)N 

= -N.PE*N-N-P3WP2N 
= PN-E*N - N.PWN = (p X N).(E*N) + w p , (23a) 
jocos#p = N.(I* + E*+W*)N=l+N«E*N. (23b) 

In (23a), the properties P3= - P , -P2N = N, and PN = pxN 
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Fig. 2 Deformation rotation circle vp and deformation rotation angle 

have been used. Because E* is symmetric, it follows from the 
spectral theorem (see, for example, Gurtin, 1981, Sect. 2) that 

E*=Efn,®ni + E2*n2®ii2, (24) 
with (ni, n2, p) orthonormal and E*>E2. Without loss of 
generality, we may require nt Xn2 = p, so that (ni, n2, pj is a 
right-handed orthonormal basis. Taking iii as the direction N0 
in (17) yields 
N = N(p) = n, cos(v - ^o) +1>2 sin(p - <p0), ( - T < <p < TT). (25) 
Substituting (25) into (23), one can obtain 

psint?p = w«p--(£7-£2*)sin[2(^-¥>0)]» 
j j (-7T<VJ<7r). 

pcost?p = 1 + - (Ef +E$) + - (Ei -Et)cos[2(<p-<pa)\, 

(26) 

To reveal the geometric meaning of formula (26), let [x, y) 
be a plane Cartesian coordinate system and introduce a curve 
Cp on x-y plane 

x (ip) = p costfp = xp + i?pcos [2(<p - <p0)], 
(—TC<(p<TT), 

y(<p)=psmdp=yp-Rfpm{2(<p-<p0)h (27) 
in which 

xf=l+^(Et+ES),yf = wp,R9 = \(Et-El). (28) 

It is obvious that this curve Cp is two superimposed circles on 
x-y plane with center (xp, yp) and radius R9 (see Fig. 2), and 
Cp resembles the well-known Mohr's circle (Timoshenko and 
Gere, 1972). We call 6P the rotation circle corresponding to 
P-

Use Xp to denote the argument of the point (xp, yp) at x-y 
plane (see Fig. 2), that is1 

TpcosXp = xp, rpsinxp=jp, (29a) 

rp = V^p+yP- (296) 
In order to give some alternative forms of the coefficients 

•Xp. y?, Tp, and Rp, introduce a special orthonormal basis (e,) 
with e3 = p = e] x e2. Let Fy, En, Wu, and w,t be the components 
of F, E, W, and w in (e,), respectively. By use of (22), and 
(7)-(9), from (28), we can easily obtain 

xP=\+^(Et+E;) = \+^(Ell+E12)=^(Fn+F22) 

= 1 +-trE* = 1 + -(trE-p«Ep) 

= ̂ trF*=^(trF-p.Fp), (30a) 

' In the exceptional case T, = 0 at a material point X, x, at Jfcan be determined 
by considering the continuity of xr at X. 

yP = w«p = w3 = w2l =-(^21 -Fn) 

= -^tr(PW)=-±tr(PF); (306) 

Tp = ̂ /xJ+y} = ̂ J(Fn+F22)
2 + (F2i-Fl2)

2; (30c) 

i?p = i (Ef -E*2)=\sl{Fn-F22)
2+ (F21+Fl2)

2 

= ̂ 2tr(E*2)-(.trE*)2 = ̂ f(En-E22)
2/4 + El2

2. (30d) 

Combining (29) and (30), we can obtain the invariance rep
resentation formulae 

rpcosXp=l+(trE-p.Ep)/2> rpsinXp = w.p, (31a) 

7p = V(w-p)2+[l+(trE-p.Ep)/2]2 . (316) 
According to the definition (18) and Fig. 2, the following 
theorem is quite evident. 

Theorem 1. If the angular region of the deformation ro
tation angle t?p is stipulated as 

a(«VxP)=[«V -Tr + xP<0p<ir + xP}, (32) 
then the mean value dp of t?p is equal to xP: 

^ P = Xp. (33) 

We can give an alternative proof of Theorem 1 as follows. 
Set 2<p0 = xp and arrange (26) into the new form: 

p cos(t?p - xp) = Tp + Rpcos(2<p), 
( — ir<<p<ir). 

p sin(t?p - xP) = - ^psin(2^), (34) 
If we restrict #P-Xp to be evaluated in the domain (32), that 
is, #p - Xp as a function of <p maps the angular region ( - it, 
w] into itself, then (34) shows that dp - xp is an odd function 
of <p. Therefore, the integration of this function on the sym
metric angular region ( - ir, TT) of <p is exactly equal to zero: 

0=:t\ {§v~x*>dlp=h\ •V/«"-Xp=A-Xp. (35) 

The algebraic proof of Theorem 1 is hereby completed. 

5 Some Further Comments on the Cauchy's Measure 
of Mean Rotation Angle 

We have to make a few comments upon the definition of 
Cauchy's measure of mean rotation and Theorem 1. In defi
nition (18) there is an essential defect that the angular range 
of t?p is ambiguously understood. However, this defect doesn't 
appear in the definition of generalized local mean rotation 
(Zheng and Hwang, 1987). As is well known, a most natural 
angular region of dp might be taken as ( —ir, w]. And in this 
case we call the mean value of t?p_the original Cauchy's mean 
rotation angle with respect to p. dp evaluated by (33) of Theo
rem 1 is a generalized Cauchy's mean rotation angle rather 
than the original one, because the angular region of the de
formation rotation angle dp in Theorem 1 is stipulated as 
(-T+Xp, T + Xp]-

It is clear from Fig. 2 that if and only if 
TP>RP, (36a) 

i.e., by use of (30c,d), 

D=Fi iF22 - F12F2i > 0, (366) 
the deformation rotation angle dp can be evaluated as a con
tinuous function on the deformation rotation circle. Otherwise, 
if TP<RP, different choice of fixed angular range of t?p will 
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Fig. 3 Maximum pure deformation rotation angles 7„iax 

result in different mean value of i?p. From Fig. 2 we can see 
that if the rotation circle is never crossed by a negative x-axis, 
then !?p is certainly continuous on the rotation circle provided 
the range of i?p is stipulated as (-it, ir]. In this case, i?p = xP 

is the original Cauchy's mean rotation angle. 
Let F = QU be the polar decomposition of the deformation 

gradient F, in which the finite rotation tensor Q is proper 
orthogonal and the right stretch tensor U is positive definite 
symmetric. According to the spectral theorem, we can give the 
spectral form of U as follows: 

U = X1N1®N1 + X2N2(g)N2 + X3N3®N3) 

(X1>X2>X3>0). (37) 

Here, X], X2, and X3 are the three principal values of U; the 
three unit orthogonal vectors Ni, N2, and N3 are the principal 
directions of U with UN,-= X,N,-, /= 1, 2, 3. As is well known, 
the stretch tensor U stands for the local pure deformation, and 
Q, the local rigid rotation. Let (p, P, II) be the fixed triple 
defined in Sect. 2, [eit e2, p) be a right-handed orthonormal 
basis with p = e1xe2 . Referring to (26) and (14ft), it follows 
that the pure deformation rotation angle 7P of the direction 
N(£) = e) cos£ + e2 sin£ satisfies 

2ij cos 7 p = (Xf + X2*) + (Xf - X2*)cos(2£), 

2r ,s in 7 p=-(Xf-X 2*)s in(2a (38a) 

and 

Xf = max{N(£)«UN(£): -7 r<£<7r ) , 

XJ=mm{N(£)«UN(£): - i r < £ < i r ) , 

v = V(X*cos£)2 + (X2*sin£)2 S X2* > 0. (38G0 

In (38c?) we have considered that the positive definiteness of 
U implies e»Ue>0 for any direction e. Since X3<X| <X* <X], 
from (38) or Fig. 3, we can easily find that the maximum value 
Ymax of YP as the function of direction p and £ is 

fXi-Xj'i 
Ymax = arcsin X,+X; = arctan (39) 

Denote the rotation angle of the finite rotation tensor Q by 
G. Because the absolute value of any deformation rotation 
angle is smaller than 191+ ymax, now we are in a position to 
state the following theorem. 

Theorem 2. If the deformation obeys 

iel+7max<ir. (40) 

then the original Cauchy's mean rotation angle, with respect 
to any direction p, certainly uniquely exists, and is equal to 
tfP = Xp-

Since 7max < 7r/2, a sufficient condition for (40) being valid 
may be given by 191 < 7r/2. 

6 Projection Polar Decomposition and Cauchy's Mean 
Rotation 

Let (p, P, II} be the fixed triple defined in Sect. 2. For ease 
of statement, if a second-order tensor D is equal to its pro
jection D* upon the plane n , we will call D to be projection 
invariant. From (11) and (6) we can easily prove that the pro
jection D* of any second order tensor D is projection invariant; 
both P and P2 are projection invariant, etc. Let Tv be given 
by (31ft). We shall prove the following theorem. 

Theorem 3." If r p > 0 , then the projection F* on II of the 
deformation gradient F has unique right and left projection 
polar decompositions: 

F* = R P U = VR P . (41) 

Here, Rp is the Cauchy's mean rotation tensor with respect to 
p, that is, Rp is_a proper orthogonal tensor with axis p and 
rotation angle dv given in Theorem 1. The symmetric tensors 
U and V, which are projection invariant, satisfy the inequal
ities: 

t rU>0 , a n d t r V > 0 . (42) 

Only the right projection polar decomposition (41)i will be 
proved in detail. Let the canonical representation of some 
proper orthogonal tensor R with axis p and rotation angle \p 
be (see, for example Guo (1980) or Xiong and Zheng (1989)) 

-cos^). R = I + Psin^ + Pz(l 

Because P r = — 
new projection invariant tensor: 

G(tf) = R r F * = [I - P sin^ + P2(l - cos^)]F* 

= F* - PF* sin^ + P2F*(1 - cos^) 

= F*cos^-PF*siniA. 

In the derivation of (44), the property 

P2F* = P2P2FP2 = P4FP2 = - P2FP2 = — F* 

(43) 

P, (P 2 ) r =P 2 , for each R we may introduce a 

(44) 

(45) 

(38ft) 

(38c) 

[F*] = 
^ i 

F2i 

0 

Fl2 0 

F22 0 

0 0 

,[PF*] = 

-F2l 

Fu 

0 

- F 2 2 0 

F12 0 

0 0 

has been used. 
Introduce an orthonormal basis [e;) with e3 = p = e1xe2 . 

Suppose all the components are given in (e,-). Then the com
ponent matrices of F* and PF* should be 

(46) 

From (44) and (46) it follows that 

F\ icos^+Fn&mil/ Fucosxp+F22sim/< 0 

[G(^)]= F2lcosi/ - F n s i n ^ F2 2cos^-F1 2sin^ 0 . (47) 

0 0 0 

Noting that G(i/<) will be symmetric if and only if 
Gi2(i/)=G2i(i'), from (47) we can change the condition 
G12(i/0 = G21(i/0 into the new form: 

(F21 -F 1 2 )cos^= (Fn +F22)smt. (48) 

However, from (30), (31), and (33) of Theorem 1, we know 

Tpsin^p"= (F21 - F 1 2 ) / 2 , T9cos^= (F„ +F 2 2 ) /2 . (49) 

Hence, the condition (48) is equivalent to 

In fact (see Zheng and Hwang, 1987), through a complicated discussion 
based on complex analysis, we have proved the theorem: If the angular range 
of the deformation rotation angle tD„ is stipulated as 

a(!5„;©=(tV -?r + /3<i?p<7r + /3), 

then the necessary and sufficient condition about /3 to ensure that the mean 
value of t?p is equal to xP is 

l/3-Xpl <7r-arcsin(«p/rp), if Tf>Rp; or 

0 = Xr, if Te<Rp. 
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2 r p s i m > - # „ ) = <). (50) 

Recalling the assumption T9>0 in Theorem 3, we know that 
G(\j/) will be symmetric if and only if the parameter i/< is taken 
as 

tk = T9 + kir, (* = 0, ± 1 , ±2 , . . .) . (51) 

Finally, substituting (51) and (49) into (47) will result in 

t r G ( ^ ) = ( F „ + F 2 2 ) c o s ^ + (F 2 1 -F 1 2 ) s in^ = 2 r p c o s ( ^ - ^ ) 

= 2 r p ( - l ) * , (*=0 , ± 1 , ± 2 , . . .) . (52) 

It implies that in order to ensure t r G ( ^ ) > 0 the parameter \p 
ought to be taken as 

\t/m = Tv + 2im, (m = 0, ± 1 , ±2 , . . .) . (53) 

However, substituting every \j/m in (53) into (44), (47), and (52) 
will lead to the unique Rp and U = G(^m) as well as the trace 
trU: 

RP = R( W = I + P s i n ^ + P2(l - costfp); (54) 

~ F?x + F^+D FuFi2 + F22F2X 

F\\Fi2 + F22F22 F22 + Fl2 + D 

0 0 

[U] = [G(^m)] = 
1 

2TB 

trU = 2TP. 

(55) 

(56) 

Here, D = FnF22-F2lFl2. A similar discussion on F*=V*RP 

will result in 

~ Fh+Fh + D FnF22+F2lFn 0 

Fi iF21 + F22Fl2 F2
2

2+Fl +D 0 

0 0 0 

[V] = 
1 

2F„ 

trV = 2r p . 

(57) 

(58) 

The proof of Theorem 3 is completed. 

7 Finite Rotation Tensor and Cauchy's Mean Rotation 
As an application of Theorem 1 and a development of Theo

rem 3, we can prove: 

Theorem 4. The finite rotation tensor Q in the polar de
composition of the deformation gradient F can be interpreted 
as the Cauchy's mean rotation tensor with respect to the ro
tation axis of Q. 

Let q be the rotation axis of Q (i.e., the unit eigenvector of 
Q: Qq = q, Iql = 1); 6 , the rotation angle of Q; and U, the 
right stretch tensor. Then the component matrix of the polar 
decomposition F = QU, in an orthonormal basis (e,) with 
e3 = q = d X e2, ought to be 

[F] = 

-sinG 
cos6 

0 

0 
0 
1 

Un 

u2i 
Un 

Un 

u22 
ui2 

Ui3 

u23 
t/33 

cosG 

sinG cosG 0 U2i U22 U2i . (59) 

0 

From (59) we obtain 

F 1 1 + F 2 2 = ( t / „ + C/22)cose, 

F2l -Fi2=(Un + t/22)sine. (60) 

Because U is positive definite symmetric, it implies Un = ex. 
Ue,>0 and U22 = e2. Ue2>0. Comparing Eq. (60) with (49) 
yields 

Q = 7^, + 2mir, (m = 0, ± 1 , ±2 , . . .); 

T9 = ^(Un + U22). (61) 

8 Comparison Between Cauchy's and Novozhilov's 
Measures of Mean Rotation 

Suppose all the components in the present section are given 
in an arbitrary right-handed orthonormal basis {e,j. The for
mula of Novozhilov's mean rotation angle with respect to e3 

is (see Novozhilov (1948) or Truesdell and Toupin (1960), Sect. 
36) 

W2X 
t anr e ,= - (62) 

V ( l + £ l l ) ( l + £ 2 2 ) - £ l 2 

Noting that (see (30), etc.) 

ye}=yve3 = w3=w2i, 

xe3 = 1 + i (trE - e3 Ee3) = 1 + \ (F,, + F22), (63) 

we can evaluate the tangent of Cauchy's mean rotation angle 
by 

W2X 
tan»e i = — = 

e3 v ] 
(64) 

e3 1 + - ( F „ + F 2 2 ) 

This formula is obviously much simpler than (62). 
Since the term under the radical sign of (62) may be rewritten 

as 

(1 +F„)(1 +E22) -Eh = J[(F„ +F22)
2 

- ( F „ - F 2 2 ) 2 - (F2 1+F1 2)2]=x2
3-7?2

3 > (65) 

in which (30) has been utilized, from (62) we have3 

- ^ ? e 3 

(66) 

Therefore, the Novozhilov's measure of mean rotation with 
respect to e3 has meaning if and only if 

xe3>Rer (67) 

(67) means that the rotation circle in Fig. 2 lies either in the 
first and forth quadrants, or in the second and third quadrants 
of the x-y plane. On the other hand, Cauchy's measure of 
mean rotation is always meaningful. 

From (62)-(65), it follows that 

ItanTejIsltantfejI. (68) 

And if and only if the deformation rotation circle in Fig. 2 
degenerates into a point, that is, Rn = 0, or 

F „ = F 2 2 , and F1 2 = 0, (69) 

the relation (68) becomes equality. 
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The exact formula of Novozhilov's measure of mean rotation should be 
sgnfoj)^ 

t a n TV = -

This completes the proof of Theorem 4. in which sgn(xe3) = ± 1 is the sign of real number xe3. 
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The Geometry of Virtual Work 
Dynamics in Screw Space 
In this paper, screw theory is employed to develop a method for generating the 
dynamic equations of a system of rigid bodies. Exterior algebra is used to derive 
the structure of screw space from projective three space (homogeneous coordinate 
space). The dynamic equation formulation method is derived from the parametric 
form of the principle of least action, and it is shown that a set of screws exist which 
serves as a basis for the tangent space of the configuration manifold. Equations 
generated using this technique are analogs of Hamilton's dynamical equations. The 
freedom screws defining the manifold's tangent space are determined from the 
contact geometry of the joint using the virtual coefficient, which is developed from 
the principle of virtual work. This results in a method that eliminates all differen
tiation operations required by other virtual work techniques, producing a formu
lation method based solely on the geometry of the system of rigid bodies. The 
procedure is applied to the derivation of the dynamic equations for the first three 
links of the Stanford manipulator. 

Introduction 
Over the past two centuries, many methods of formulating 

the dynamic equations of rigid bodies have been developed. 
These methods can be classified as either Newton-Euler or 
energy methods. The Newton-Euler method is the most fun
damental procedure for formulating dynamic equations. In 
this technique, all forces applied to the rigid body are iden
tified, often with the aid of free-body diagrams, and set equal 
to the inertial forces (Pars, 1965, and Wittenburg, 1977). Vis
ualization brought about by the use of the free-body diagram 
is often an aid in the derivation process. The technique's main 
drawback is the identification of constraint forces, which, es
pecially in three-dimensional problems, becomes a tedious task 
(Wittenburg, 1977). 

Energy methods eliminate the need to identify the constraint 
forces. In the most popular energy methods, those of Lagrange 
and Hamilton, kinetic energy and potential energy, or work 
functions, are specified, and variational calculus is used to 
determine the dynamic equations of motion (Lanczos, 1970). 
Since these methods are based on the minimization of a definite 
integral, the geometry of the resulting space serves as an im
portant analytical tool. The drawback of these methods is their 
abstract nature. A picture analogous to the free-body diagram 
is not available to aid in the generation of the system equations. 
Furthermore, the methods are primarily designed to handle 
conservative systems. Frictional terms, an important factor in 
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many rigid-body systems, can be included in Hamilton's 
method; however, the process involves minimizing the action 
integral using Lagrange multipliers (Whittaker, 1937), and is 
not physically intuitive. 

Methods based on the principle of virtual work have been 
developed to alleviate problems encountered with the varia
tional approach (Wittenburg, 1977, Kane and Levinson, 1985, 
and Roberson and Schwertassek, 1988). These procedures pro
vide the ability to visualize externally applied forces, but also 
require the differentiation of constraint functions, which are 
not given any geometric significance. The virtual work methods 
also lack the manifold interpretations of the variational meth
ods brought about by the minimization process. As a result, 
the analytical advantages of the variational techniques are lost. 

The elliptic geometry of screw space can serve to enhance 
the visualization of virtual work methods. The initial appli
cations of screw geometry to problems of rigid body mechanics 
were introduced by Ball (1990) and others in the late 1800's. 
Modern technology has driven a resurgence in the application 
of line geometry. Most of the applications have been in the 
field of kinematics. Some authors have applied line geometry 
to the formulation of dynamic equations employing Newton-
Euler (Yang, 1969, and Pennock and Yang, 1983), Lagrange 
(Luh and Gu, 1987) and virtual work (Woo and Freudenstein, 
1971, and Agrawal, 1988) formalisms. None of these methods 
have utilized the full power of line geometry to develop re
lationships between the dynamic equations and the geometry 
of the constraints. 

In this paper, geometrical interpretations of virtual work 
methods applied to rigid-body dynamic analysis will be de
scribed in some detail. Exterior algebra is used to develop screw 
space from its underlying homogeneous coordinate space. Ten
sor methods are used to geometrically interpret the formulation 
method. The result is a relationship between the constraint 
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geometry and the geometry of the dynamic system's config
uration space. 

The Mathematics of Differential Forms 

The mathematical structure of homogeneous line space can 
be defined using the mathematics of differential forms (Bishop 
and Goldberg, 1968; Flanders, 1963). Exterior algebra, an 
extension of linear algebra, defines the underlying algebraic 
structure of differential calculus. Given the ordered set of basis 
ei, e2, . . . , erf, which span the vector space V, the rules of 
exterior algebra are given as 

e,Ae, = 0 for all / (la) 

e,-Ae,-= -e,Ae, for i<j (lb) 

where A is the wedge product operator. A general form of the 
first order, called a 1-form, can be expressed as 

P = b>*j (2) 

where the coefficients ti can be functions of other variables. 
(The indicial summation convention has been used throughout 
this paper. Unless noted otherwise, the index ;' sums over the 
number of bodies, TV; j , and k sum over the dimension of the 
system's freedom space, n\ and all other indices sum from 1 
to 6. Superscripted variables represent contravariant indices, 
while subscripted variables represent covariant indices (Bishop 
and Goldberg, 1968, and Flanders, 1963).) 

New linear spaces can be generated from V using the wedge 
product operator (Bishop and Goldberg, 1968). These new 
spaces are designated as APV, and represent the space of pth 
order forms, p-forms, on V. These higher order forms are 
generated by forming the wedge product between lower order 
forms. The algebraic properties of A are shown below: 

\A(/z + 7) = XA/x + XAY 

AA(/iAY) = (\A/i)AY 

(3a) 

Ob) 

lxA\ = (-l)lm\Aix (3c) 

where n is an /th order form and X is a mth-order form. The 
wedge product is zero if the order of the result is larger than 
the order of the basis, d. 

A space conjugate to A^Kis developed using the Hodge star 
operator. Given the wedge product 

e,-,A...Ae,-
'1 ' r 

(4) 

a set of indices (/i» • • • > Jd-p) is chosen such that (iu . . . , ip, j ^ , 
• • •. Jd-p) is an even permutation of (1, . . . , d); then the Hodge 
star operator is defined as 

*(e/lA...Ae,p) = (e,1A...Ae/rfp. (5) 

This space is designated by APV*. APV and APV* are dual 
spaces. 

The exterior derivative of a differential form is an operation 
which takes a pth-order form to a (p + l)th-order form. Its 
properties are summarized as: 

d(\ + n)=d\ + dii. (6a) 

d(\Aix)=dXAix + (-l)m\Adix (6b) 

d(da)=0 (6c) 

dfJ^dJ (6d) 

where a> is a differential form and / is a function (a zeroth-
order form). 

Tensor Notation Applied to Screw Theory 
Buchheim (1884) used exterior algebra to develop a theory 

of screws in elliptic space. Homogeneous point space, or pro
jective space, is the linear space which serves as a basis for the 

rest of the theory. In this space, a point is represented by the 
expression 

x = x*e„ (7) 

where h sums from 1 to 4. The four independent coordinates 
are reduced to three by stating that point coordinates are equal 
if there exists a scalar, a, such that 

%'=ax. (8) 

The resulting space includes Euclidean three space and the 
plane at infinity (Penna and Patterson, 1986). The addition 
of infinity to ordinary three-dimensional space has important 
theoretical consequences. 

The dual space, specified by the Hodge star operator (Buch
heim called this the conjugation operator), is the space of 
planes through three points. Table 1 shows the relationship 
between the basis of homogeneous point space and the basis 
of its dual space, homogeneous plane space. 

Line space is generated by forming the wedge product be
tween pairs of points (Buchheim, 1884) 

a = xAy (9) 
where a is a 1 X 6 vector representing the line and x and y 
are homogeneous points on the line. These coordinates are 
called the ray coordinates of the line, and form the covariant 
screw space. The dual space, defined by the Hodge star op
erator, is represented by the axis coordinates of a line. These 
coordinates are determined by finding the meet between two 
planes (i.e., the wedge product of two planes), and form the 
contravariant screw space. Table 1 also shows the relationship 
between the ray and axis coordinates of a line. 

The distinctions drawn above are important because they 
generate the mathematical framework which aids in the phys
ical interpretation of mathematical operations. For example, 
if wrenches are expressed in axis coordinates, /,„, and twists 
are expressed in ray coordinates, dBm, then virtual work, w, 
becomes 

w = d6mfm (10) 

which is a natural pairing (Bishop and Goldberg, 1986) between 
the wrench and twist spaces. These interrelationships are sum
marized as 

wrench space « contravariant space « functions on twist 
space 
twist space •» covariant space « functions on wrench-
space 

Traditionally, ray coordinates are used to express both the 
twist and wrench spaces (e.g., see Dimentburg, 1968). To ac
commodate this notation, the correlation A is introduced (Lip-
kin and Duffy, 1985) to perform the Hodge star operation 

0 I3 

h 0 

where 73 represents the three-by-three identity matrix. This 
operation transforms covariant line vectors into contravariant 
space 

*(«) = £<*. (12) 

Table 1 The relationships between the homogeneous point 
coordinate bases and the plane, ray, and axis coordinate bases. 
The Hodge star operator transforms between dual bases. 
Point Bases „ Plane Bases Ray Bases „ Axis Bases 

A = (ID 

ei 
e2 

e3 

C4 

e2Ae4Ae3 

e3Ae4Aei 
e!Ae4Ae2 

e!Ae2Ae3 

e4Ae! 
e4Ae2 

e4Ae3 

e2Ae3 

e3Ae, 
eiAe2 

e3Ae2 

e,Ae3 

e2Ae! 
e[Ae4 

e2Ae4 

e3Ae4 
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In this paper, the ray coordinates will be used to represent 
both twist and wrench axes, and the correlation will be used 
to transform wrenches into the contravariant space. 

The applications of line geometry to rigid body mechanics 
was first described by Ball (1990). Ball's theory was based on 
two basic theorems of rigid-body mechanics. The first, due to 
Chasles, proved that a general rigid body displacement can be 
uniquely defined in terms of a rotation about a line fixed in 
space combined with a simultaneous translation parallel to the 
line. The second theorem, proved by Poinsot, states that any 
force-torque pair can be uniquely decomposed into a force 
along a line fixed in space and a torque in a plane normal to 
the line. A line fixed in space is the unifying geometric element 
in both definitions, making line geometry an ideal means of 
representing these quantities. Ball introduced the concept of 
a twist to represent an infinitesimal rigid body displacement 
and a wrench to represent the force-torque pair. The space 
formed by the set of all possible twists is called the twist space, 
while the set of all wrenches is called the wrench space. These 
spaces are dual line spaces, analogous to the ray and axis 
spaces, and the transformation between the two is described 
by A. Lipkin and Duffy (1985) present a detailed discussion 
of the properties of elliptic geometry and its application to 
rigid-body mechanics. 

Rigid-Body Transformation in Line Space 
Rigid-body transformations in line space can be easily es

tablished using exterior algebra and standard homogeneous 
transformations. In homogeneous space, rigid-body transfor
mations have the general form 

xltl = b'hx
heh (13) 

where e/, and «, represent the fixed and moving frames, re
spectfully, and b1/, represent the elements of the homogeneous 
transformation matrix B (h and 1 sum from 1 to 4). Using 
column vectors to represent the points, the matrix B has the 
form 

5 = 

b\ 
b\ 
b\ 
0 

b± 
bl 
bl 
0 

b\ 
bj 
bl 
0 

b\ 
b\ 
bl 
1 

(14) 

where the upper left three-by-three submatrix represents the 
rotation and the upper right three-by-one submatrix represents 
the translation of the rigid body. Computing the wedge product 
between two points in the rigid body, the following matrix 
represents the transformation of the ray coordinates of a line 

The justification for assigning the coefficients of the twist 
space to the axis space can be shown by computing the velocity 
of the rigid body in either the fixed or moving space. The 
velocity relationship can be determined by differentiating Eq. 
(13) 

A.-lufrW f*? Vi e*. (17) 

Expressing the velocity in the moving system (remember, the 
coordinates x! were originally specified in the moving system), 
this equation becomes 

vhb- W( s * f &~Ve (18) 

where / sums from 1 to 4. The coefficients (d/dt bfyb'^ave 
the components of the angular velocity matrix, which in pro
jective three space is given by 

fi = 

0 
o)? 
o>? 

0)2 

0 
0)2 

0)3 

<4 
0 

o>4 
2 

0)4 

0)4 

0 0 0 0 

(19) 

where the upper left three-by-three submatrix is skew sym
metric. In analogy to three-dimensional vector mechanics, 
Buchheim (1884) suggested the following formula for the ve
locity of a homogeneous point: 

x = *(coAx) (20) 

where 0) is the angular velocity expressed in ray coordinates 

= (o) ,o> ,o) ,0) ,o> ,o) ) (21) 

(the superscripts correspond to rows in Table 1). This formula 
is accurate for all but the homogeneous coordinate of x. As
signing corresponding values to the angular velocity matrix 
gives 

.3 

Q = 

0 
o)3 

- o ) 2 

0 

— 0) 

0 
0)' 

0 

CO 

- c o 1 

0 
0 

0) 

o,5 

o,6 

0 

(22) 

This shows that using ray coordinates for the twist space, the 
first three components correspond to the angular velocity vec
tor and the second three components represent the linear ve
locity. 

B-

b$b\~ 
b\b\-
b\b\~ 
b\b\~ 
b\b\-
b\b\-

-b\b\ 
-b\b\ 
-b\b\ 
-b\b\ 
-b\b\ 
-b\b\ 

b\b\-
b\b\-
b\bl-
b\b\-
b\b\-
b\b\-

-b\b\ 
-b\b\ 

-b\b\ 
-b\b\ 
-b\b\ 
-b\b\ 

b\b\-
b\b\-
b\b\-
b\bl-
b\b\-
b\b\-

-b\b\ 
-b\b\ 
-b\b\ 
-b\b\ 

-b\bl 
-b\b\ 

b\b\-
b\b\-
b\b\-
b\bl-
blb\-
b\b\-

-b\b\ 
-b\b\ 
-b\b\ 
-b\bl 
-b\bl 
-b\b\ 

b\b\-
b\b\-
b\b\-
blb\-
m-
b\b\-

-b\bi 
-b\b\ 
-blbi 
-blb\ 
-b\b\ 
-b\b\ 

b\b\-
b\b\-
b\b\-
bjbl-
b\b\-
b\b\-

-b\b\ 
-b\b\ 
-b\b\ 
-b\b\ 
-b\b\ 
-b\b\ 

(15) 

Substituting Eq. (14) into this expression generates the general 
form of a rigid-body transformation in line space 

B = 

b\ 
b\ 
b\ 

b\b\~b\b\ 
b\b\ - b\b\ 
b\b\~b\b\ 

b\ 
bl 
b\ 

b\bl-b\bl 
b\b\-b\bl 
b\b\-b\b\ 

b\ 
b\ 
bl 

b\b\-b\b\ 
b\b\-b\bl 
b\b\-b\b\ 

0 
0 
0 
b\ 
bi 
b\ 

0 
0 
0 
b\ 
bl 
bl 

0 
0 
0 
b\ 

bl 
bl 

(16) 

This is the screw affinor described by Dimentburg (1968). 

Virtual Work in Line Space 
The work performed by a twist on a wrench is determined 

by the equation 
w = d6r\\i) = d6'Klhf

h (23) 

where d$ and f are vectors representing the ray coordinates of 
the twist and wrench, respectively. The operation A«,/'' trans
forms the wrench into axis space. A purely geometric quantity, 
called the virtual coefficient, is generated by normalizing this 
quantity with respect to the twist and wrench magnitudes. Since 
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Fig. 1 A cylindrical joint showing the contact surface (dashed lines) 

the twist and wrench spaces are duals of one another, the virtual 
coefficient can be calculated in either space. 

The virtual coefficient plays an pre-eminent role in the theory 
of screws. If the virtual coefficient is zero, the twist and wrench 
are said to be reciprocal to one another. This means that the 
force can do no work against the displacement, or stated dif
ferently, the force cannot influence motions occuring about 
the twist's axis. The virtual coefficient is invariant with respect 
to coordinate system transformations. 

By determining the set of screws reciprocal to a given set of 
screws, Ball (1900) used the virtual coefficient to geometrically 
define the freedom spaces of a rigid body subject to constraints. 
The freedom screw space is the set of lines reciprocal to the 
forces of constraint. If the geometry of contact between two 
surfaces is known, the constraint forces are assumed to be 
normal to the joint surface at these points of contact, the 
motions allowed by a joint can be computed using the virtual 
coefficient (Hunt, 1978; Waldron, 1972). This space is spanned 
by a set of reciprocal screws. Another set of reciprocal screws 
span the constraint space. Motion is allowed on the screws of 
freedom and disallowed on the screws of constraint. 

The coordinates of an arbitrary twist in the freedom space 
of a joint is given by the equations 

dO = aidql + ...+andqn (24) 

where a, are the lines serving as a basis for the freedom space, 
and the ratio of the coefficients dq,/dqn; i = 1 . . . n - 1; 
uniquely specifies any twist axis in the space. Since the a,- are 
computed directly from the joint contact geometry, they de
pend only on the position and shape of the joint. 

Using Eq. (24), the velocity of the rigid body can be expressed 
as 

m = cnql + ...+anq" (25) 

where o> is the line vector associated with the angular velocity 
matrix, also known as the instantaneous screw axis. If the joint 
is moving, additional screws are included which represent joints 
between the current joint and the inertial reference frame. 
These expressions will be used later to generate the dynamic 
equations of a system of rigid bodies. 

An Example of the Freedom Space Calculation 
To illustrate the calculation of the freedom space of a joint, 

consider the cylindrical joint shown in Fig. 1. The region of 
contact between the rigid bodies in this joint is described by 
the equation of a cylinder, given below in parametric form 

" r cos0 + cx~ 
r sin</> + cy 

X 
1 

where 0 < <j> < 1-K and - 1 < X < 1 . The normal vector of 
the surface is given by the equation 

- cos0" 

x(</>,x) = (26) 

n(*,x) = 
-sin</> 

0 
L 0 . 

(27) 

i?W>,x) = xAn = (28) 

The set of line vectors representing the constraint wrenches is 
given by 

-cos<£ 
-sin</> 

0 
X sin<£ 

— X cos</> 
- cx sin<£ + cy cos0 

If the virtual coefficient between these constraint wrenches and 
an arbitrary twist vector is set equal to zero, the following 
equation is generated 

d6'Kmi}h = dd\ sin</> - dd\ cos0 

+ dd3 (cy cos4> - cx sin<£) - dd4 cos0 - dd5 sin<£ = 0. (29) 

This equation must be true for all values of <j> and x- The 
following conditions on the coordinates of the twist are gen
erated 

dr = dd3cv 

de5= dd3cx (30) 

where dd3 and dd6 are arbitrary quantities. 
Two reciprocal line vectors can be generated which span this 

freedom space 

«, = (0,0, l ,c>,-c„l) (31) 

«i = ( 0 , 0 , l , c „ - c „ - l ) . (32) 

This shows that the joint will only allow rotations about and 
translations along the line (0, 0, 1, cx, cy, 0). Notice that these 
vectors are not unique; three arbitrary choices were made in 
their specification. A similar calculation can be performed on 
an arbitrary joint shape. Only the geometry of the contact 
region is required to determine the freedom space of the joint. 

Inertial Properties of a Rigid Body in Screw Space 
The kinetic energy of a mass element in a general shape can 

be written as 

dT=<v,\>dm = \K*(\)dm (33) 

where v is the velocity of a point in the space, dm is the mass 
at the point, and < •, • > is the symbol of a natural pairing 
in the space. Since screw space is built upon projective three 
space, the expression for the velocity used in this equation is 

i)'e, = (o{^e,. (34) 

Substituting the velocity into Eq. (33) generates the following 
expression 

dT= [o>'hx
;'eiK*(Jmxmei)}dm={Jhx*o>'mxme,A*(el)}dm. (35) 

Integrating over the volume of the rigid body, the total kinetic 
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energy of the body is determined. Using homogeneous trans
formations, this equation can be expressed as (Paul, 1981) 

T=ti(UJQ') (36) 

where tr(») is the trace operation, and the matrix J has the 
form 

1 

/ = 

\lyy-T l a lxx) 

1 
\*xx > *zz *yy) 

~ \*xx>'yy *zz) $z 

m 
(37) 

where m is the total mass of the rigid body, s, are the first 
mass moments of the rigid body, and ly are the mass moments 
of inertia. Using the line geometric representation of the an
gular velocity matrix, the following matrix can be written which 
represents the inertial properties of the mass in screw space 

M= *yz 

Sz 

0 

-sx 

sx 

0 

0 

"z 

-Sy 

m 
0 
0 

0 
sx 

0 
m 
0 

*y 

0 
0 
0 
m 

(38) 

and the kinetic energy can be expressed as 

T= <Jmlhuih. 

Dimentberg (1968) called the matrix M the inertia binor. 

(39) 

The Parametric Form of the Principle of Least Action 

Virtual work methods can be related to variational ap
proaches using the parametric form of the principle of least 
action. In this form, action is defined as twice the definite 
integral of kinetic energy, using time as a dependent variable 
(Lanczos, 1970) 

A=2 Tt'dr (40) 

where T is the kinetic energy of the system, T is an arbitrary 
independent parameter, and t' is the derivative of time with 
respect to T. All energy methods of formulating dynamic equa
tions for mechanical systems can be found by minimizing this 
functional. Differences between each of the methods are ob
tained by placing different constraints on the minimization 
process. 

Using Eqs. (25) and (39), the kinetic energy of the system 
can be expressed as 

~ 1 / A 1 
T=-coimi,h<J)i=- SikOtikmuhSijCiij m (41) 

Sik = 

where q" are derivatives of the position variables with respect 
to r, ay is the y'th screw spanning the motion space of the /th 
rigid body, and sik are the elements of a matrix S, which are 
defined as follows: 

1 if aik lies between the rth body and the inertial frame 
0 if not. 

(42) 

The matrix S can be computed from a graph of the system's 
topology. This form is made possible by the fact that the ay 

are functions of the system's configuration exclusively. Time-
dependent kinetic energy, caused by gyroscopic elements or 

prescribed motions, can also be expressed by representing their 
motion axes in the form of Eq. (25). Since the virtual work 
calculation is invariant with respect to coordinate system trans
formations, coordinate systems can be. chosen such that the 
equations of each rigid body are expressed in their simplest 
form. This is a great advantage when formulating the equations 
of a complex system. 

An extremely simple representation of the system can be 
obtained by rewriting Eq. (41) in terms of the system mo
mentum. The momentum of the system associated with the 
kth velocity can be written as 

Pk = Sika'ikmuhsuaijgJ (43) 

and the momentum associated with time is equal to the total 
energy of the system. Substituting this expression into Eq. (41) 
and determining its unconstrained minimum by setting the 
variation of Eq. (40) to zero generates the following simple 
equation: 

f = 0. (44) 

Manifold Interpretations 
Equation (44) can be interpreted as a generalization of the 

law of inertia, which states that a particle under its own inertia 
moves in a straight line with constant velocity (Lanczos, 1970). 
In this case, the straight line is a geodesic in the system's 
configuration space. 

Upon closer examination, Eq. (43) can be seen to have two 
components. The first consists of the terms sik a,*, which are 
the screw spanning the freedom space of the /th body. The 
line vectors generating this space are covariant vectors. The 
remaining terms in the momentum equation is a contravariant 
vector representing the momentum of the rth body. Thus, Eq. 
(43) represents a natural pairing between the freedom space 
and the system's momentum, meaning that the momentum is 
a function on the freedom space of the joint. 

Following this logic, Newton's second law can be generalized 
by projecting the system's force vectors onto the tangent space 
of the configuration manifold 

dr 
= Sika'ikKij'i (45) 

where f, is the sum of the wrenches applied to the rth body. 
This expression, along with the definition of the momentum 
(Eq. (43)), are analogous to Hamilton's canonical equations 
of motion for rigid bodies. In this development no restrictions 
have been placed on the form of the system forces. Therefore, 
frictional forces can easily be incorporated into the equations 
of motion. Reparameterizing these equations with respect to 
time is done by dividing the rigid body momenta and velocities 
by t'. 

The Integrability of Screw Spaces 
The validity of the manifold representation requires the tan

gent space of the manifold to be integrable. The mathematics 
of differential forms provides the most convenient means of 
studying the integrability of the tangent space. The Frobenius 
integration theorem (Flanders, 1963) states that a set of dif
ferential one forms, w', is integrable if there exists a matrix 
of one forms, d'j, such that 

tfw'' = 0JAw/'. (46) 

In the case of kinematic manifolds, the integrability conditions 
are given by (Peterson, to appear) 

«/*. d(o&dg*)=yA(«£d^) (47) 

where J,h is an element of the angular velocity matrix describing 
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the instantaneous motion of the /th coordinate system in line 
space. 

It can be shown that if the screws spanning the freedom 
space of a joint are integrable, then tangent spaces composed 
of chains of these joints will also be integrable. It is a trivial 
exercise to show that the velocities of single-degree-of-freedom 
joints are always integrable to position coordinates. If the axes 
are independent (i.e., the derivatives on the left-hand side of 
Eq. (24) are zero), transformations represented by the motion 
axes must be order independent. This is true if the joint is 
purely translational, or if a rotation and translation occur 
about the same axis (as in the example described earlier). All 
other transformations are order dependent. 

In higher degree-of-freedom joints, new generalized coor
dinates must be introduced so the dynamic equations can be 
integrated. One possible set of generalized coordinates are the 
dual Euler parameters (Rooney, 1978). In this case, simple 
equations exist which relate the derivatives of the dual Euler 
parameters to the angular velocity vector. Another solution is 
generated by spanning the freedom space of the joint with a 
chain of single-degree-of-freedom joints. This commonly used 
procedure almost always introduces singularities into the joint 
motion space. 

Example: Stanford Manipulator 
To show that the algorithm presented above generates the 

correct dynamic equations of a system of rigid bodies, the 
equations for the first three links of the Stanford manipulator 
arm (see Fig. 2) will be derived. These equations are given in 
symbolic form by Paul (1981). The system is a special type 
since its topological structure can be represented as a tree 
(Roberson and Schwertassek, 1988), thereby giving the matrix 
S the following triangular form 

S = 
1 
1 
1 

0 
1 
1 

0 
0 
1 

(48) 

The tree structure simplifies the derivation of the dynamic 
equations. 

There are two types of joints in the Stanford manipulator, 
revolute and prismatic. Following traditional approaches, the 
coordinate system for each part will be placed at the intersec
tion of joint axes with the z-axis aligned with the motion axis 
(Hartenberg and Denavit, 1964). The local freedom spaces 
calculated from the contact geometry are 

"revolute = (0,0,1,0,0,0) (49) 

aPrismatie = (0,0,0,0,0,1). (50) 

These local joint freedom spaces must be transformed into 
the coordinate systems of each link. These transformation 
matrices are specified using the standard Hartenburg and De
navit parameters. The Hartenberg and Denavit parameters of 
the Stanford robot are given in Table 2. The tree topology of 
the machine indicates that recursion can be utilized to make 
this calculation extremely efficient. 

The mass properties for the Stanford arm are given in Table 
3. Notice that the joint coordinate systems are parallel to the 
principle inertia axes. This simplifies the resulting mass mat
rices. The mass properties can be simplified further by placing 
the body coordinate systems at the center of mass of each link. 

Expressions for the generalized momenta can now be writ
ten. The momenta have the form 

pk = dkJqj (51) 
where dkj are elements of a generalized inertia matrix D and 
can be computed using the expression 

dkj = sik(JlkmlhiSUay. (52) 
Since M, is a symmetric matrix, the generalized inertia matrix 

Fig. 2 The Stanford arm showing the orientation of each joint coor
dinate system 

Table 2 Hartenberg and Denavit parameters of the Stanford 
manipulator (these values were obtained from Paul (1981)) 
Joint $ h a a 

1 0, 0 0 - 9 0 d e g 
2 02 h2 0 9 0 d e g 
3 0 h3 0 0 

Table 3 Inertia properties of the Stanford manipulator (these 
values were obtained from Paul (1981)) 
Link 

1 
2 
3 

0.00 
0.00 
0.00 

1.75 
•10.54 
0.00 

-11.05 
0.00 

-64.47 

9.25 
5.01 
4.25 

0.276 
0.108 
2.510 

0.255 
0.018 
2.510 

0.071 
0.100 
0.006 

is symmetric. The elements of the generalized inertia matrix 
for this problem are given in the Appendix. 

Finally, the effects of actuator and gravitational forces must 
be modeled. These forces are identified by drawing free-body 
diagrams of each link. The direction of the gravitational forces 
are determined by rotating the z-axis into each body's coor
dinate system. The total applied wrench, obtained by summing 
the gravitational and actuator forces for each body, are pro
jected onto the tangent space of the configuration manifold 
using virtual work (see Eq. (45)). The equations describing the 
dynamic behavior of the system of rigid bodies are provided 
in the Appendix. These equations agree with those obtained 
by Paul (1981). 

Summary 
This paper has presented a method of formulating the dy

namic equations of a system of rigid bodies based on virtual 
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work. The method utilizes the geometry of screw space to 
describe the freedom space of each body, and as a result pro
vides a purely geometric representation of the rigid body con
straints. By minimizing the integral of the parametric form of 
the kinetic energy (treating time as a dependent variable), the 
method was related to other variational principles. In this 
procedure, the screws of the system's freedom space form the 
basis of the tangent space of the configuration manifold. Forces 
are projected onto the configuration manifold using virtual 
work. The resulting equations are analogous to Hamilton's 
equations. 

The advantages of the new approach are threefold. First, 
the development of the system equations can be performed 
without any differentiation operations. The tangent space is 
determined using the geometry of contact between bodies on 
either side of the joint. Since the method is based primarily 
on geometry, visual tools, such as free-body diagrams, can be 
used as an aid in the derivation process. 

The second advantage is the simplicity of the resulting equa
tions. Hamilton's equations are the simplest representation of 
a mechanical system's dynamic behavior. As a result, when 
applying this method extremely efficient simulation codes can 
be developed. 

Finally, many analytical tools are available for investigating 
the characteristics of dynamic equations expressed in varia
tional form. These methods are primarily aimed at under
standing the system's motion in configuration space. Since this 
method generates similar geometry, all the tools of analytical 
mechanics can be brought to bear on the problem. 

The method presented in this paper is not yet complete. 
Further research is required to develop methods of modeling 
closed loop chains. Also, efficient methods of computing con
straint reactions are required to transform this technique into 
a useful design tool. With these additional algorithms, the new 
method provides a powerful new tool for studying the dynamics 
of multi-rigid body systems. 
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A P P E N D I X 
The dynamics equations describing the behavior of the Stan

ford manipulator are given below. 

q=ZT lp 
where 

h3 

p is a vector containing the generalized momenta, and the 
elements of D are 

rfn = hyy + m2 (h2+yc2)
2 + mxz\2 + (4<* 

+ m3(h3 + zc3)
2) sin202 + (I2zz + I3zz + m3h\) cos202 

di2 = d2i= -m3h2(h3 + zc3)cosd2 

d\3 = d3X = - m3h2smd2 

d22 = hyy + I3yy + m3(h3+zc3)
2 

d23 = d32 = 0 
d33 = m3. 

The rate of change of the momenta are given by the equations 

i>\ = n 
p2 = r2 + m3g(h3 + zc3) sin02 

P3 =f3 - m3g cos02 

where T,- and/3 represent the actuator forces. 
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A Theorem on the Exact 
Nonsimilar Steady-State Motions 
of a Nonlinear Oscillator 
In this work the steady-state motions of a nonlinear, discrete, undamped oscillator 
are examined. This is achieved by using the notion of exact steady state, i.e., a 
motion where all coordinates of the system oscillate equiperiodically, with a period 
equal to that of the excitation. Special forcing functions that are periodic but not 
necessarily harmonic are applied to the system, and its steady response is approx
imately computed by an asymptotic methodology. For a system with cubic nonlin-
earity, a general theorem is given on the necessary and sufficient conditions that a 
excitation should satisfy in order to lead to an exact steady motion. As a result of 
this theorem, a whole class of admissible periodic functions capable of producing 
steady motions is identified (in contrast to the linear case, where the only excitation 
leading to a steady-state motion is the harmonic one). An analytic expression for 
the modal curve describing the steady motion of the system in the configuration 
space is derived and numerical simulations of the steady-state motions of a strongly 
nonlinear oscillator excited by two different forcing functions are presented. 

1 Introduction 
In many engineering applications, such as modal analysis 

and vibration isolation, there is a need to determine the steady-
state responses of periodically forced mechanical structures. 
Moreover, information about the steady dynamical motion of 
a forced structural component is essential in order to design 
against large-amplitude resonant motions which may result in 
its early failure. Approximate analytic techniques for com-
putating the steady dynamic response of simple nonlinear me
chanical components already exist in the literature. However, 
the majority of these methods applies only to weakly nonlinear 
systems and assumes that the structural responses are approx
imately harmonic. 

In this work, the notion of the exact steady state is used in 
order to study the forced response of a nonlinear discrete 
oscillator. The concept of nonlinear exact steady state was first 
introduced in Rosenberg (1966a,b) and implemented in the 
study of strongly nonlinear discrete oscillators. 

By Rosenberg's definition, an n degree-of-freedom oscillator 
excited by a periodic forcing is in an exact steady state if it 
vibrates in unison, having as least period that of the excitation. 
A vibration in unison was defined as a motion where all the 
coordinates of the system vary equiperiodically reaching their 
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extremum values at the same instant of time. Rosenberg showed 
that in an exact steady state, the motion of the system can be 
represented by a single line in the configuration space (modal 
line). Depending on the form of the corresponding modal line, 
the steady state was termed either similar (straight modal line), 
or nonsimilar (curved modal line). In addition, it was shown 
that these nonlinear resonances always occur in the neighbor
hoods of the nonlinear normal modes of the unforced systems 
(Rosenberg, 1966a; Yang et al., 1968). 

The general problem of the existence of similar steady states 
was addressed in Kinney (1965) and Kinney et al. (1966), where 
special cam-functions were used as exciting forces. Subse
quently, geometrical methods were used in the configuration 
space to detect and compute the modal lines of the forced 
motion. In the same references, a homogeneous two-degree-
of-freedom system with cubic nonlinearity was examined (a 
system with stiffness proportional to the same power of the 
displacement). Elliptic forcing functions were used and it was 
shown that as many as five steady states may exist for a specific 
value of the frequency of the external excitation. The extension 
of these results to the nonhomogeneous system was presented 
in Caughey et al. (1991), where it was found that the topological 
portrait of the resonance curves representing similar steady-
state motions changed when a bifurcation of the normal modes 
of the unforced system occurred. In such cases, a variation of 
a certain structural parameter leads to an increase of the res
onance branches that describe the similar steady-state motion. 

The only works that the authors were able to find on the 
problem of nonsimilar steady state were those by Kinney (1965) 
and Mikhlin (1974); in these works a set of functional equations 
for the derivation of the curved modal line that described the 
exact steady state was given. These equations became singular 
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at the end points of the modal lines, and an asymptotic meth
odology for approximating the modal curve at low amplitudes 
was needed. In the same references, specific applications of 
the theory were given for a two-degree-of-freedom system with 
cubic nonlinearity, excited by elliptic-cosine functions. 

In all of the aforementioned references, special forcing func
tions were considered for analyzing exact steady states. A basic 
feature, however, of nonlinear undamped discrete systems is 
that, depending on the form of the excitation, they may possess 
multiple steady-state solutions. A basic, general question there
fore arises: Suppose that a nonlinear discrete oscillator is acted 
by aperiodic excitation.-Under what conditions will this force 
produce an exact steady-state motion? Evidently, the required 
conditions must depend on the degree of the nonlinearity as 
well as on the structural parameters of the system. In addition, 
steady-state motion for the class of undamped oscillators under 
investigation can be materialized only for a specific set of initial 
conditions. This is because in undamped systems, initial tran
sients do not decay with time (as in systems with damping). 
As a result, one has to initiate the motion with specific initial 
conditions in order to obtain a periodic steady-state response. 
Thus, two specific subproblems result from the aforemen
tioned general question: The first concerns the derivation of 
the necessary and sufficient conditions that a periodic force 
must satisfy in order to lead to an exact steady state. Then, 
given such an admissible periodic excitation, one has to com
pute the specific set of initial conditions of the oscillator that 
lead to an elimination of the initial transients of the response 
and give rise to a periodic steady-state motion. 

In the following sections a general methodology for ad
dressing the above problems is outlined. Then, an application 
of the theory is given for a two-degree-of-freedom oscillator 
with cubic nonlinearity. 

2 General Formulation of the Problem 
Consider the general w-degree-of-freedom undamped non

linear system, excited by n forces epi(t) 

Xi=fi(xi, ...,x„)+epi(t), /'=1, ..., n (1) 

subject to the set of initial conditions 

x,{0)=Xh */(0) = 0, /= 1, 2 n. (2) 
The forces epi(t) are assumed to be weak since their am

plitude is proportional to the parameter e which is assumed to 
be of perturbation order (i.e., I e I « 1 ) and periodic with least 
common period T. Thus, the nonconservative system (1) can 
be regarded as resulting from the perturbation of a conservative 
one, corresponding to e = 0. In what follows, it is assumed that 
the unperturbed (unforced) system has a potential function 
which is positive definite and symmetric with respect to the 
origin of the configuration space. This condition is satisfied 
when the stiffnesses of the system are odd functions of the 
displacements. Under these assumptions, it can be shown that 
the unperturbed system can possess normal modes of free 
oscillation which are symmetric with respect to the origin of 
the configuration space. Then, the steady-state motions of the 
perturbed (forced) system can be regarded as resulting from 
the perturbations of the normal modes of the unforced oscil
lator. 

Initially, the formulation of Mikhlin (1974) will be followed 
in order to derive the functional equations describing the modal 
lines at the steady state. To this end, suppose that system (1) 
oscillates in an exact steady state. Then, the response Xi(t) is 
periodic with minimum period T (equal to that of the exci
tation); therefore, at the steady state, one can express the time 
variable t as a single-valued function of the displacement xr, 
for f€[0,772). Symbolically, this inversion can be written as 

Using (3) one can (in principle) eliminate the variable t from 
expression (1), and obtain the following equivalent autono
mous system 

Xi=Mxi x„)+epi(t(xi)) 

=fi(Xi x„) + epi(Xi), / = ! , (4) 
where epi(t(xi))=epi(xi). Note, however, that the equiva
lence between systems (1) and (4) only holds at the steady 
state. The exact nonsimilar steady states of the original system 
(1) correspond to nonsimilar normal modes of the equivalent 
autonomous system (4), and as a result, the problem of the 
forced nonsimilar steady motion is converted to the problem 
of computing the nonsimilar modes of the equivalent auton
omous system. This later problem has been investigated by 
several authors (Rand, 1971, 1974; Rosenberg et al., 1964; 
Atkinson et al., 1965) and a variety of techniques exist for its 
solution. 

The nonsimilar normal modes of the equivalent system (4) 
(corresponding to nonsimilar steady states of the original prob
lem (1)) are expressed as: 

Xj = Xj(xr), 7 = 1 n, i*r. (5) 

Note that only one of the variables, namely xr, is needed to 
parametrize the motion. The nonlinear functions x,( •) satisfy 
(«-1) functional relations of the form (Mikhlin, 1974): 

2[h-V(Xl(xr),...,xn{xr))] 
k=\,k*r 

dxk 

dxr 

ld% 
dxl 

dx-
+ lfr(Xl(Xr), ...,Xn(Xr))+epr(xdXr))]-r 

dxr 

=fi(Xi(xr), .... x„(xr))+epi(xl(xr)) 

' = 1 , 2 n,i*r. (6) 
The quantity h is the total (fixed) energy of the equivalent 

autonomous system and Kis its potential energy. Observe that 
the functional equations (6) become singular at the maximum 
equipotential surface V= h of the equivalent system, since the 
coefficients of the second derivatives of the displacements van
ish here. Hence, it is necessary to develop an asymptotic scheme 
for computing the modal lines. 

Complementing the aforementioned functional equations, 
there exist (n - 1) boundary orthogonality conditions that guar
antee that the modal lines intersect orthogonally the maximum 
equi-potential surface of the equivalent system (Mikhlin, 1974): 

'dxn \fr(xdXr) xn(Xr))+epr(Xl(Xr))] 
dx, 

=fi(xi(Xr), ..., xAX^+epimXr)). (7) 
A detailed asymptotic analysis will be carried out in the 

following section where a forced two-degree-of-system oscil
lator with cubic nonlinearity will be examined. The nonlinear 
relations (5) describing the modal lines of the nonsimilar modes 
of the equivalent system will be approximated by series expres
sions containing powers of the displacements: 

Xi(xr) = 2 ekxfk)(xr), i= 1, .... H, i*r. (8) 

t=t(xi), '€[0,772). (3) 

The &th-order approximations ekxfk) (xr) will be also expressed 
in series representations as: 

*/*'<*<•) = E aU)XJrJ=i /!,lVr. (9) 
7=1,3,5,... 

Note that only odd terms are included in the series (this is due 
to the required symmetries of the modal lines in the config
uration space). The coefficients a\k) in (9) will be determined 
by substituting the series representations in the functional re
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lations (6)-(7) and matching coefficients of respective powers 
of xr. Moreover, successive approximations for the amplitude 
Xr will be obtained by requiring that at each level of approx
imation, the period of the steady-state motion be equal to the 
period of the external excitation T. It can be shown that the 
asymptotic solution converges in any open subinterval of [ - Xr, 
Xr], but not at the limiting values ±Xr (a rigorous mathe
matical proof of the convergence can be found in Manevitch 
et al. (1972). 

3 System With Cubic Nonlinearity: Basic Theorem 
In this section, the general methodology of the previous 

section will be applied to the analysis of the forced motion of 
a specific oscillator. For the sake of simplicity, a two-degree-
of-freedom system with cubic nonlinearity will be considered 
with an external force acting on one of the masses. However, 
later it will be shown how the results of this section can be 
generalized to the case of systems with more degrees-of-free-
dom and higher degree of nonlinearity. 

The equations of motion of the system are given by 
xi + xx + x\ + Ki (*, - x2) + K3 (xi -x2)

3 = ep(t) 

x2 + x2 + x2 + Ki(x2-xl)+K3(x2-xl)
3 = 0 (10) 

where ep(t) is a small periodic force of period T. The scalars 
Ki and K3 are positive quantities of O(l), and represent the 
coefficients of the linear and nonlinear parts of the coupling 
stiffness. The initial conditions of the system are assumed to 
be of the form 

*,(0) = Xh i,(0) = 0, / = 1, 2 (11) 
When e = 0 (no excitation), the unforced system has two similar 
modes of free oscillation (Vakakis et al., 1988): 
8 A symmetric mode, where x2 = xx for all times. 
8 An antisymmetric mode, where x2= -X\ for all times. 
When e^O, the normal modes are perturbed, and the system 
becomes (weakly) nonconservative. At the steady state the time 
variable can be expressed as a function of the variable X\\ 
t=t(xi). Thus, in principle one can eliminate the time de
pendence in the expression of the forcing function and sym
bolically write 

ep{t(xi))meP(xi),K[0,T/2). (12) 
As a result, at the steady state the forced problem (10) becomes 
equivalent to an autonomous one, described by the following 
set of equations: 

xl+xl+x3
l+Kl(Xi-x2)+K3(xi-x2)

3 = ep(x1) 
x2+x2 + x3

2 + Ki(x2-Xi)+K3(x2-x1)
3 = 0 (13) 

for td [0,772). As mentioned earlier, a nonsimilar normal mode 
of the equivalent system (13) corresponds to a nonsimilar steady 
state for the forced problem (10). Such a motion is represented 
in the configuration plane by the modal line x2=x2(xi). 

This modal relation must hold at every value of time; there
fore, the time derivatives of the coordinate x2 during a non-
similar normal mode motion can be expressed by the chain 
rule as x2 = x2k\, x2 = X2 {k\)2 + xix\, where (•)' = d/dx\ and 
(•) = d/dt. Substituting for x2, x2, and x2 into the equations 
of motion (13) and eliminating the velocity X\ by integrating 
the first of the above equations by quadratures one obtains 
the following functional equation for the (unknown) modal 
function x2(-): 

- 2 t f [ < ^ ( l + * ) + ^ 

+ y[K3(Z-x2(Z))3-KJXItt)-60(l;)]dil 

-Xi [Xi +x\ + K1xl -x2Kx +K3(x1-£2)
3-ep(xi)) 

+ x2 + x3
2 + Klx2-Klxl+K3(x2-x1)

3 = 0. (14) 

This functional equation is analogous to the general expres
sion (6) that was derived earlier for the general «-degree-of-
freedom oscillator. Note that the coefficient of the second 
derivative of x2 becomes zero at x, = ±Xt. As a result, the 
asymptotic approximation to the solution will be valid only in 
open intervals contained in [-Xu Xi\. To guarantee that the 
series solution intersects the maximum equi-potential surface 
at the points (xit x2) = ( ±XX, ±X2), one imposes the addi
tional boundary condition: 

-x{ (Xt){Xl+X] + K,X,-x2(Xi)Ki 

+K3{Xl-x2(Xl))
3-ep(Xl)} 

+ x2(Xi)+x2(Xi)
3 + K1x2(Xl) 

-K1X1+K3(x2(Xl)-Xl)
3 = 0. (15) 

This equation is equivalent to the boundary orthogonality con
ditions (7) that were derived in the general formulation of the 
problem. The modal line of the equivalent autonomous system 
is asymptotically approximated as follows: 

x2(Xx) = 4 V i ) +ex2
1)(xl) + 0(e2). (16) 

The various orders of approximation will now be evaluated 
separately. 

Zeroth Order Approximation. The zeroth order approxi
mation x2

0) (xi) is found by substituting (16) into the functional 
relations (14)-(15) and considering only terms of O(l). The 
resulting responses correspond to the similar normal modes 
(straight modal lines) of the unperturbed system (with e = 0): 

xf(x1)=cxuc=±l. (17) 
Moreover, the time response X\ =Xi(t) is given in terms of an 
elliptic function 

Xl(t)=Xl0cn(qt,k) (18) 

where 

q2 = X2 + ii2X2
0, k2 = iSx^/lq2, X2 = 1 

+ Ki(l-c),n2=l+Ki(l-c)3. 
The quantity Xl0 denotes the first-order approximation to the 
amplitude of oscillation Xt and is a yet unknown quantity. To 
compute A'IO one has to impose an additional condition, namely, 
that the oscillation (18) is of period T. This is because, at the 
steady state, the forced oscillation must be of the same period 
with that of the excitation. Thus, one requires that 

w = irq/2K(k)=2n/T (19) 

where o is the frequency of oscillation in (rad/sec) and K(>) 
is the complete elliptic integral of the first kind. From (19), 
the amplitude Xl0 can be determined by a numerical root-
finding technique. 

First-Order Approximation. Considering O(e) terms in 
(14)-(15), the following functional equations for the first-order 
approximation, X2

l) {Xi), result in 

- 2 4 ' > " p ^ ^ [l+*i(l-c)] 

+ (4-Xto) [1+^ (1_c)3]j 

-W'[[I + KM-c)\xi + ll+K3(l-c)3x\] 
+ x2

i){[l+Kl(l+c)] + 3c2xj}+p0(xl)=0 (20) 

and 
-x2

l)'{Xl0) I [1 +Kl(l-c)]Xw+ [1 +K3(l-c)3]X]0} 

+ *£1,(*ioH[l +Kl(l+c)] + 3c2X2
l0} +MXio)=0. (21) 

The termpo. which appears in the above equations, represents 
the first-order approximation to the function p(t) when the 
time t is expressed as a function of xx. Inverting the zeroth 
order solution (18) one obtains (Byrd et al., 1954) 
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xi/Xl0 = cn(qt,k)=>t=t(xl) 

= F(s in- ' [ l - (Xl/Xi0)
2]l/2,k)/q (22) 

and 
Mxi)=p(Wn-l[l- (x,/Xw)Y\k)/q). (23) 

In the above expressions, F{>,>) is the incomplete elliptic in
tegral of the first kind. 

Thus, an explicit analytic expression is obtained for 
Po (xi). which in turn can be substituted into (20)-(21) to obtain 
the first-order approximation^''(^i). Note, however, that the 
above expression is very complicated and thus of little practical 
use. In order to obtain a simplified expression for Po(xi), a 
change of variables is now introduced. This involves the am
plitude function, aw(«,»), defined as (Byrd et al., 1954): 

cn(u,k)=cos<t>=*(j> = am(u,k). (24) 
Then from Eq. (22) one can write 

cn(qt,k)=cos<t>^>4> = ctm{qt,k) (25) 
and solve for the variable / 

t = am-'l(4>,k)/q=*t=F{4>,k)/q. (26) 
Using (26), one can eliminate the time variable from the 

expression of the forcing function as follows: 

A(*i)-A)(*)-/>(*"(*,*)/?). (27) 
Expression (27) replaces the complicated formula (23), and 
represents the first-order approximation to the forcing func
tion. The displacement xx is also expressed in terms of the new 
variable <t>, as 

xi = xx (4>) = X10cos<£. (28) 

Thus, the newly introduced variable <j> replaces completely 
the displacement *i in the functional equations (20)-(21) and 
it can be regarded as the new time-like independent variable. 
Equations (27)-(28) provide a means for computing an alter
native, simplified expression for the required forcing function 
Po. To achieve this, one has to expand the expression (27) of 
j&oW in generalized Fourier series with respect to the variable 
0 (Bejarano and Sanchez, 1988, 1989; Margallo et al., 1988). 

Referring to Eq. (26) and taking into account certain prop
erties of the incomplete elliptic integral of the first kind, it can 
be shown that the following correspondence between the vari
ables t and 4> exists: 

«[O, + 772)=»0€[O, + ir) and « [ - 772,0)-^[- i r ,0) . (29) 
Clearly, in each of the above time intervals, the representation 
t = t(x\) has meaning (i.e., is a single-valued function). More
over, the above relations, coupled with the assumption that 
the forcing function ep(t) is periodic with period T, lead to 
the conclusion that the function po(4>) is also periodic in </>, 
with a period equal to 2w. It can be therefore, expanded in 
generalized Fourier series as follows: 

oo oo 

A(0) = 2 A„cosn<t>+^ Bmsmm<t> (30) 

where the coefficients A„ and B„ are computed by the well-
known Fourier series formulas 

Po(<l>)clct>,An = a/Tr)\ A>(0)cos«4>ety 

B, • = (!/*) J* A 'O(<£)sinw0tf0. (31) 

Consider now the first-order approximation for the displace
ment, $$P (Xi), and express it in the following series form: 

4 " <*i) = a£V*i + c®x\ + aSJM + • • •. (32) 
Transforming into the new variable </>, one obtains 

jei1)(*i)-Jti1)(*)=fliVA-10cos* 
+ «$̂ ioCOS3</> + atyxlocos^ +••• (33) 

Substituting now for X\=xx(4>), Po(Xi) =A)(</>) and xP 
(xi)=x^((f)) into the functional equations of the first ap
proximation (20)-(21), one obtains the following final set of 
equations containing only trigonometric terms of the variable 

( - 6a$Xlocos0 - 20«g^?ocos3<£) T^xUcos2^ - 1) 

+ 7l1)^io(cos4</>-l)/2 

+ (-4V-3^2oCos2</. 

- 5«$ATloCosV) Tf'̂ iocostf) + 71'^ocos3^ 

+ (a^iocos0 + a$X3
l(fiOs3<t> , 

+ a$X{0cos54> 7f> + ry^ocos2^ 

and 
+ c 2 ] A" COSM* + S Bm sinm<t> = ° (34) 

( - 4 " - 3 a ^ ? o -5a%XlJT?% io+Til)Xw 

+ (<$Xl0 + a%X\0 + a<$X\o) 7f> + T^X\Q {+ e g A „ = 0 

(35) 
where terms of 0(x\) = O(cos70) or higher were omitted and 
T[l)=\+Ki(\-c), Til)=l+K3(l-c)3, 7f> = 1+^1(1+ c), 

7f> = 3c2. (36) 

An exact steady-state motion can only occur, provided that 
the above expressions lead to real solutions for the (as yet 
unknown) coefficients <$}; in what follows, these coefficients 
will be obtained by suitably matching coefficients of respective 
powers of cos<£ and sin0. Before doing this, however, there is 
a need to expand the terms cosn<j> and smn4> in powers of cos</> 
and sin<j>. 

Considering the transformed functional relations (34)-(35), 
the following can be concluded as far as the generalized series 
of the forcing function is concerned: 

(1) The coefficients of the sine terms of the generalized series 
(30) must be zero: 

Bm = 0,m=l,2, 3, (37fl) 

This is because, the functional Eq. (34), terms containing 
powers of sin0 cannot be balanced for any values of the coef
ficients a$. In fact, condition (37a) can be shown to be equiv
alent to the statement that the steady-state response of the 
undamped oscillator is either in phase or out of phase with 
the excitation, in the absence of damping (Vakakis, 1990). 

(2) A second restriction on the coefficients of the Fourier 
series (30) results from the fact that there exist only odd powers 
of cos<£ in the functional equations (34)-(35). Hence, it is 
necessary that the Fourier series of p0(<t>) do not contain any 
even cosine terms 

A2J = 0,j = 0, 1,2, ... (376) 

This condition is an immediate result of the fact that the 
nonlinearities of the oscillator under investigation are of odd 
degrees: there exist no even powers of cos0 to balance the odd 
cosine terms of the generalized Fourier series of the excitation. 
In particular, fory' = 0, the above condition gives 

J h(4>)d4>=\ p(F(4>,k)/q)d<t> = 0. (38) 

The above equation is the equivalent for the system with 

Journal of Applied Mechanics JUNE 1992, Vol. 59/421 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



cubic nonlinearity, of the analogous (trivial) condition satisfied 
by periodic forces in linear steady-state motions, namely that 

{772 

p(t)dt = 0 (linear theory). (39) 
- 7 7 2 

In fact, one can easily show that when the coefficients of 
the nonlinear terms in the equations of motion vanish, Eq. 
(38) degenerates to the expression (39). Note, however, that 
condition (38) does not imply (39). 

Summarizing, it was found that in order for a steady state 
to exist, certain restrictions on the form of the periodic exci
tations must be posed. These are necessary conditions for a 
steady-state motion and are given by (37a)-(31b). 

It can be also shown that once these conditions are met, one 
can always compute numerical values for the coefficients «$. 
To this end, suppose that the system is acted by a periodic 
excitation which satisfies conditions (37a)-(376). Then it will 
be shown that, sufficiently close to a similar normal mode of 
the unforced system, an exact steady-state motion results. Note 
that, because of the nonlinearities a variety of responses are 
possible, such as aperiodic motions or sub and ultraharmonic 
ones; however, in this work only exact steady states are con
sidered. Thus, sufficiently close to a normal mode of the un
forced system the relations (37a)-(31b) can also be proven to 
be sufficient for the realization of an exact steady state. 

For weak excitations that are sufficiently close to the normal 
mode, X2 = cxi, an exact steady state motion is described by 
the relation 

x2(x1) = (c + eai
2\

))xl + ea2
iM + ea2

1M + 0(ex1
l,e

2). (40) 

The coefficients d$j can then be evaluated by matching the 
coefficients of the various powers of cos</> in expressions (34)-
(35). Details of this computation can be found in (Vakakis, 
1990), and a synopsis of the analytic results is in the Appendix. 

Since c can take either the value + 1, or - 1 (zeroth-order 
approximation), two possible exact nonsimilar steady-state 
motions exist, each one occurring in the neighborhood of a 
normal mode of the unforced system. Moreover, the time 
responses of the system can be evaluated by substituting the 
modal relation (40) into the first of the equations of motion 
(10), and integrating by quadratures. To achieve this, one must 
eliminate the trigonometric terms in the expression of p0(4>) 
by expanding them in powers of cos$ and subsequently use 
the formula (28). Then the following asymptotic approxima
tion for the forcing function results in 

ep(Xi) =eS!V1 /*1 0) + eSil)(Xl/Xi0)
3 

+ eS?\Xl/Xl0)
5 + O(exU2) (41) 

where expressions for Sj" can be found in the Appendix. 
Finally, an improved approximation for the amplitude of 

steady-state oscillation, X\, can be derived by imposing the 
requirement that the period of steady motion is equal to T 
(equal to that of the force). Details for that computation can 
be found in (Vakakis, 1990). The stability of the steady-state 
motion can be examined by numerically computing its Floquet 
multipliers (Vakakis, 1990). 

The results of this section can be summarized in the form 
of a theorem as follows: 

Theorem. Consider a two-degree-of-freedom oscillator 
with cubic nonlinearity, excited by aperiodic excitation ep(t), 
and having equations of motion given by (10). Provided that 
the excitation is sufficiently small, and that the initial condi
tions are given by (11), a necessary and sufficient condition 
for the occurrence of exact steady-state motions in the neigh
borhoods of normal modes of the unforced system is that the 
generalized Fourier series of the excitation is of the form: 

00 

A)(*) = S -42y+iCos(2y+l)4> 
7 = 0 

where 

A2j+l = (l/ir)\ A>(0)cos(2/+1)<M4> 
•>-T 

and the function f>o(4>) is evaluated by the expression 
h(4>)^P(F(4>,k)/q). 

In the above equations, F(',») is the incomplete elliptic 
integral of the first kind, and the quantities q and k depend 
on the structural parameters of the oscillator and the period 
of the external force. 

Moreover, at the steady state, the system generally oscillates 
as in a nonsimilar normal mode. 

The following remarks are appropriate at this point. 
• Although the theorem is stated for a specific set of initial 

conditions, this does not restrict its validity. For different initial 
conditions, the analysis can be carried out in exactly the same 
way, with different restrictions, however, to the forcing func
tions. 

8 The theorem can be generalized easily to systems with more 
than two-degrees-of-freedom. In that case more than one func
tional equation and boundary orthogonality condition are in
volved, but the basic steps of the analysis remain unaltered. 

8 Finally, the theorem can be extended to systems with a 
degree of nonlinearity higher than three. In that case, the 
incomplete elliptic integral of the first kind in the argument 
of the forcing function ep(t) should be replaced by an (un-
tabulated) incomplete integral. 

4 Numerical Applications 
Applications of the theorem were made by considering two 

specific forms for the forcing function 

epi(t) = ePiCOSxj/t and 

ep2(t)=e (P2/2)tan"' (2acoswf/(l - a2)). (42) 

Both of these functions satisfy the conditions of the theorem 
and therefore lead to exact steady-state motions. Details about 
the numerical computations can be found in (Vakakis, 1990), 
and the resulting steady-state motions are shown at Figs. l(a-
b). Both these motions are proven to be orbitally stable. It 
must be noted, however, that in each case, there exists an 
additional branch of steady solutions near the symmetric mode 
that is orbitally unstable. These motions will not be presented 
here. 

It can be seen that at the steady state the displacement has 
the period of the excitation. Note also, that although the force 
is restricted to small values, the displacements are of 0(1). 

5 Discussion 
In this work, a detailed analysis of a two-degree-of-freedom 

system with cubic nonlinearity was carried out, and it was 
shown that close to each of its normal modes, an exact non-
similar steady-state response exists. To prove this, the forced 
problem was transformed, at the steady state, to an equivalent 
unforced one; an asymptotic analysis was then implemented 
to find the nonsimilar normal modes of the transformed sys
tem. These oscillations were then shown to correspond to non-
similar steady states of the original forced problem. 

Using this methodology a general theorem was stated, and 
the general class of periodic functions that can produce exact 
steady-state motions in the system with cubic nonlinearity was 
identified. Moreover, extensions of the theorem can be made 
for systems with many degree-of-freedom and arbitrary odd 
nonlinearities. 

The theorem assumes that the unforced system has nonlinear 
normal modes and its results are only valid for weak excita
tions. The resulting asymptotic expansions are valid in the 
neighborhoods of the unperturbed normal modes and their 
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Fig. 1 Displacement x, during a nonsimilar steady-state oscillation in 
the neighborhood of the normal mode c= + 1 . Numerical values of the 
parameters: K, = 1.3, K3 = 0.7. (a) Forcing function tprft), eP,=0.10, 
u = 1.25, (b) Forcing function ip2(t), eP2 = 0.15, u = 1.25, a = 0.5. 

accuracy is improved when one computes higher order terms 
(that were omitted in the present analysis). 

A general conclusion of this work is that the concept of 
nonlinear normal mode can be successfully used for studying 
the forced response of nonlinear discrete oscillators. This is 
because steady-state motions result as perturbations of normal 
modes, provided that the system is excited by a suitable ad
missible periodic forcing function. Although harmonic func
tions are included in the general class of admissible excitations, 
this work showed that these are not the only forcing functions 
leading to exact steady states: In fact, a whole class of periodic 
functions was identified capable of producing steady motions. 
This outlines a limitation of the majority of conventional meth
ods, since they only consider harmonic excitations and assume 
only predominantly harmonic responses. No such assumptions 
were made here, since the general nonsimilar steady-state re

sponses were expressed in asymptotic series whose dominant 
terms consisted of the normal mode motions. Hence, for weak 
excitations, and close to the corresponding normal modes, the 
steady solutions derived here are expected to be more accurate 
than those obtained by conventional methodologies. 

Finally, the mathematical formulation developed in this work 
has direct application in practical engineering problems in
volving periodically forced mechanical components. By mod
elling these components by discrete linear and nonlinear elements 
one is able to use the outline formulation in order to compute 
forced dynamical responses. The advantage of the present 
method over existing ones lies on the use of elliptic functions 
(instead of harmonic ones) as zeroth order approximations of 
the steady motions; thus, the nonlinearities of the system are 
taken into account in the zeroth-order approximation and this 
leads to more accurate results compared to averaging or asymp-
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totic methods which assume harmonic zeroth-order approxi
mations. Current work by the authors is focused on applying 
the presented methodology for predicting the dynamic response 
of realistic models of practical nonlinear structures such as 
bladed-disk assemblies and large periodic truss members. 
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A P P E N D I X 
The coefficients d$j of the modal relation (40) are given by 

the following analytic expressions (Vakakis, 1991): 

m (7l»-7l'>MV cS\»/Xl0 
a" ' 6T^x\a+37M0 eri'^fo+37Mo 

°h 20T^X\0+\QT^X\Q 

- ( c^> /^ , )+4 ' ) (97 l 1 >-7 l» ) 
20T^X2

W+\QT^X\Q 

-4MV+40 

where 

4»=(34°*?o+54°*?o ( TI'^IO+aTOo) 
. - (LPX\0+LPX\0)(TP+TPXJ0)-C(W+W+W) 

and 

4 " = ̂ o(l +Li1)*?o + 4,)*fo) (21"+ T{l)X2
w) 

- Xw(l + 3L[l)X2
0 + 5 / M o ) (T[l) + 7$>X\0) 

where the quantities 7J1' are given by expressions (36), and 
Sft) = Ai-3A3 + 5A5+---

S^1) = 4A3-20A5+---

$)=16A5+ ••• 

where Aj are the coefficients of the odd cosine terms in the 
generalized Fourier series (30) (their values are given by the 
second of expressions (31)). 

424/Vol. 59, JUNE 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Roger F. Bans 
Department of Mechanical Engineering, 

University of Rochester, 
Rochester, NY 14627 

Mem. ASME 

On the Dynamics of a Conservative 
Elastic Pendulum 
This paper presents a finite element model of the elastica, without dissipation, in a 
form realizable in the laboratory: a set of rigid links connected by torsion springs. 
The model is shown to reproduce the linear elastic behavior of beams. The linear 
beam, and most nonlinear beams are not periodic. (The linear eigenfrequencies are 
incommensurate.) They do exhibit a basic cyclic behavior, the beam waving back 
and forth with a measurable period. Extensive exploration of the behavior of a four-
link model reveals windows of periodicity—isolated points in parameter space where 
the motion is nearly periodic. (The basic phase plane diagrams are asymmetric, and 
the time evolution of the motion distributes this asymmetry symmetrically in time.) 
The first such window shows a period twice the basic cycle time, the next, less well 
observed one, four times the basic cycle time. 

1 Introduction 
Many flexible objects and structures undergo large defor

mations without suffering large strains. Think of rolling up a 
sheet of paper, or bending a metal tape measure. The equili
brium shapes of these bent objects are calculated using the 
theory of the elastica. The static theory of the elastica has been 
exhaustively treated in the monograph by Frisch-Fay (1962). 
The dynamic problem is more difficult. It has been seriously 
attacked only during the last decade or two, partly in response 
to interest in the behavior and control of flexible structures, 
both in the robotics community (e.g., Cannon and Schmitz, 
1984; Singh and Schy, 1986; Daniel et al., 1988) and in the 
space structures community (e.g., Balas, 1982; Meirovitch et 
al., 1984; Schaechter, 1981, 1982). Both communities share a 
common interest in making their structures as light as possible 
while retaining the ability to control them precisely. The state 
of the art appears to be the careful control of a cantilever 
beam undergoing small deflections, so that linear beam theory 
can be applied. This paper addresses the dynamics of flexible 
beams for large deflections, where linear beam theory must be 
replaced by the theory of the elastica. 

The general dynamical equations have been given by Antman 
and Kenney (1981). Caflisch and Maddocks (1984, hereafter 
referred to as CM) provide a specialization to a two-dimen
sional system, which they use to establish the stability of the 
classical buckling solutions in a full dynamic setting. Antman 
and Liu (1979) discuss time-dependent solutions for beams with 
general constitutive laws under the two restrictions that the 
bar be infinitely long, and that the deflections be in the form 
of traveling waves. These two restrictions combine to reduce 
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the partial differential system to an ordinary differential sys
tem. The work most closely related to that presented here is 
that of Snyder and Wilson (1990, hereafter referred to as SW). 
SW present a fascinating application of their work, modeling 
the behavior of bellows mechanisms with a view toward even
tual control of such systems. Similar work has been done by 
Simo and Vu-Quoc (1986a,b, hereafter referred to as SV). Note 
that control is still a long way off. Both this work and SW 
are too computationally intensive for real-time applications. 

The simplest dynamical problem is that of the free oscillation 
of a simple beam, one with a rectangular cross-section, obeying 
Hooke's law, fixed at one end and free at the other. Two 
extreme cases that leap to mind are the beam by itself and the 
beam with a massive "bob" at a free end. I call the latter an 
elastica pendulum. SV deal with the former case (and with 
damping, which I omit.) SW deal with the latter, sans damping 
and inertia. 

I constructed a model of this elastica pendulum (Gans, 1989) 
valid under the assumption that the beam inertia is negligible 
compared to that of the bob. This is the same assumption as 
that of SW, and the analysis was similar, although I looked 
only at the free oscillations of the system. My model predicted 
that the period of the gravest oscillation is hardly different 
from that predicted by simple small deflection linear theory. 
The beam's behavior, however, is not simple. As the bob moves 
through its arc, it is subject to violent short-term accelerations 
apparently related to incipient "snap through"—the appear
ance of inflection points in the beam profile as bending waves 
propagate up and down the length of the beam. The relaxation 
scheme I used apparently obscured the details of the violent 
behavior, which were detectable only in the tip accelerations. 
SW specifically avoided this situation; "the sequence of load
ing and the range of motion are specified so that the elastica 
has single curvature . . ." (SW, p. 205),' and they did not look 
in detail at the dynamic behavior of the tip mass. In this paper 
I introduce a better model, and use that model to discuss the 
behavior of the system. The model includes both translational 
and rotational inertia of the beam. One can add damping and 
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locally applied external forces and loadings. I omit these in 
the interest of clarity. The simple model's behavior has a rich 
dynamical structure, and this paper focuses on that behavior. 

Let me remark that the current study is different from and 
complementary to the work over the past decade of Moon and 
his co-workers, summarized in his recent monograph (Moon, 
1987). Moon deals with forced motion in weakly dissipative 
systems. The "Moon beam" is an elastic system that is a 
physical realization of Duffing's equation: the forced oscil
lation of a beam appropriately modeled by inclusion of the 
first nonlinear term in the deformation, not by the full elastica 
model used here. I am dealing with unconstrained motion in 
conservative systems. 

I will show that the Lagrangian of a mass spring system 
made up of rigid links joined by linear torsion springs is equiv
alent to the Lagrangian of the elastica pendulum in the limit 
that the number of links goes to infinity. The only requirement 
is to choose the spring constant proportional to the number 
of links. Once this relationship has been established, it becomes 
possible to study the behavior of the continuous system using 
quite crude segmented systems, for which massive amounts of 
dynamical data can be obtained. It is also possible to examine 
the behavior of the segmented systems experimentally, al
though I have not done this yet. Note also that the continuous 
system cannot be solved analytically, so that the continuous 
solutions are themselves discrete, finite dimensional results. 
Nothing is lost in practice by this new program. 

The plan of this paper is to begin by establishing the con-

tip mass 

(b) 

Fig. 1 The large deflection elastica; (a) sketch of the beam, (b) the two-
dimensional segmented model 

nection between the continuous and segmented beam models. 
Once this has been done, in Section 2, I will discuss some of 
the segmented models in detail and finally offer some conjec
tures as to the applicability of these systems to the continuous 
system. A rich structure of possible behavior is uncovered, 
and this paper cannot examine all the modes. The major feature 
1 have been able to identify is isolated windows (in parameter 
space) of near-periodic behavior in a nonlinear dynamic system 
that is not periodic in its linear limit. This near-periodic be
havior has aspects of period doubling strongly reminiscent of 
the classical period doubling route to chaos. 

2 Formulation 
Consider an inextensible beam with a rectangular cross-sec

tion, thickness w, width b, and length L. Let p and E denote 
the density and Young's modulus of the beam material. The 
mass of the beam m = pbwL. Let a point mass Mm be fixed 
at one end, and let the other end be fixed. Assume that b » 
w so that it is reasonable to suppose that motion will be con
fined to a plane and twist can be neglected. Let the beam be 
oriented as in Fig. 1(a). Define 0 as the angle between the 
tangent to the beam at any point and the Ar-axis. The angle f 
shown in the figure is the complement of 6, and it is useful in 
discussing the linear case, for which its absolute value is small. 
Let s denote the arclength along the beam, 0 < s < L. 

The kinetic energy of this beam-mass system can be written 

\j62 + n\ dcosddu + dsinddu ds 

+ mM\ I dcosddu + dsinddu (1) 

where J is the mass moment of inertia per unit length, p the 
mass per unit length, and I use a dot to denote differentiation 
with respect to time. The first term on the right-hand side 
represents the kinetic energy of the beam itself, both rotational 
and translational, and the second term the (translational) ki
netic energy of the point mass at the tip. The potential (elastic) 
energy V is given by 

HI: El ds. (2) 

These expressions are the unconstrained versions of the same 
expressions given by CM, who showed how to derive an in-
tegro-differential system from this by Hamilton's principle. 
They do not solve that system. Any solution must be found 
using numerical methods, which means that some discretiza
tion is a consequence of seeking a solution. Consider that 
introduced by discretizing the expression for the Lagrangian 

L = T *<{* 
+ 

1 
+ - m 

2 

+ M[ [J 
dsinddu 

M\ [f' CO 

s 

dcosddu 
0 

M 
iddu 

2 

+ 

ds 

8 sinddu (3) 

• Let the beam be divided into n + 1 equal segments, labeled 
0, 1, ..., n. Let N = n + I. Let the beam have a uniform 
cross-section, so that the jth segment has mass m/N, length 
L/N and mass moment of inertia 

J=m[(L/N)2+w2]/12 (4) 

fory = 0, 1, 2, ... n. Figure \{b) shows the segmented model 
in two dimensions. 

I approximate the inner integral using the trapezoidal rule: 
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N\ fds = -f0 + -fn+Yifk 
J° z z *=i 

[ as simple boxes 

0 Ar=0 

and the outer integral as simple boxes 

(5) 

(6) 

This leads to an approximate Lagrangian 

L=\ JJ (m/N)[(L/N)2+w2]/12dj 

- El(N/L) (O2-0j_iy+ 
, mL 

•*-—r N3 0,cos0/2 + ]>] (9tcos(9; 

0 /sin0/2+]>] 0*sin0* 

M/«Z/ 

N z 2 ] 0*cos0j + ( 2 ] «*sinfl, (7) 

where again the dot denotes differentiation with respect to 
time. This expression is recognizable as the Lagrangian of a 
set of segments of mass m/N, carrying an end load, connected 
by torsional springs with a linear spring constant EI (N/L), 
where EI = Ebw3/12 is the bending stiffness of the beam. In 
the limit that N — oo, Eq. (7) becomes Eq. (3). 

It is convenient to nondimensionalize the problem. Let 
lengths (x, y, s) be scaled by L, mass by m, energy by EI/L, 
the elastic energy scale, and time by (L/wj1 (pws2/E) , where 
p denotes the density of the beam material. The time scale is 
long compared to the time required for an elastic wave to 
propagate either across or along the beam. The dimensionless 
spring constant is AT/12. The governing equations for the dis
crete dynamical system can now be obtained in the form of a 
second-order system: 

M }[*] = [*] (8) 
where [0], [<j>], and [b] are column vectors and [A] is a square 
matrix. The elements of {A} are denoted by Ajk and are given 
by 

if *=y 
otherwise 

and the right-hand side vector [b] has elements given by 

bj= (h + 2M)hhm(6n - 6j)62„/2 + {N/12)66j 

+ L[(aJkn+\/2)h+M]h2sm(6k-ej)e2
k (10) 

where h = l/Nis the interval of integration, and the dimen
sionless mass of a link, 

(n-k if k<j 

[n-j if k>j 

and 

f [ ( « + 1 / 3 -k)h + M\h2 

Jk {[(n+l/2-k)h + M\h2cos(6k-6j) (9) 

aJknz (11) 

50; = 
0/+1-20/ + 0/-

if j=n 
otherwise. 

(12) 

The linear problem for the model is of some interest. The 
details are straightforward, and will be omitted here. The hy
pothesis of simple harmonic motion at a frequency co leads to 
an eigenvalue problem. The problem can be solved exactly for 
N = 2 or 3, as the eigenvalue equation is linear or quadratic 
in co2, respectively. For N > 3 numerical methods are appro
priate. 

3 Results 

3.1 Model Verification and Linear Results. The system 

(8) is nonlinear. Only numerical solutions are possible for the 
full system, but the eigenfunction solution to the linearized 
problem is available to assess the problem qualitatively. I solve 
the nonlinear system (8) using a variable step Runge-Kutta 
scheme adapted from that in Press et al. (1986). The code 
conserves energy to the accuracy imposed on the step-size mon
itoring, typically one part in 104. Three simple initial conditions 
are used: (1) that resulting from a force applied to the free 
end at right angles to the beam, (2) that resulting from a pure 
moment applied to the free end, and (3) that resulting from a 
buckling load,-a compressive load parallel to the beam. Dif
ferent initial conditions lead to different behavior, but certain 
universal behavior persists for all loading situations. 

Global oscillatory behavior is most easily seen in the elastic 
energy as a function of time. (This is not good enough to 
explore some of the more subtle and important behaviors.) I 
have examined this for beams of 3, 4, 8, and 10 segments, all 
with the same initial force loading condition (fH = 0.01—the 
offset varies with the number of links, from 0.01 to 0.03— 
and spring constants 1/4, 1/3, 2/3, and 10/12.) The computed 
frequency is linear in l/N. The asymptotic frequency for 
l/N = 0 is 0.1556. 

There are two simple analytic limits available for compar
ison. The first is the two-segment beam (a simple mass-spring 
system). The second is a continuous beam with M » 1 in the 
small displacement limit. The latter is a beam bending model 
obtained by neglecting the mass of the beam and assuming an 
inertial load at the tip. Linear beam theory gives co = 0.1581 
for this case. The code reproduces the two-segment result, and 
its predictions tend to the linear limit as N — oo. The two 
percent difference between the asymptotic frequency and the 
analytic frequency is easily accounted for by the neglect of 
beam inertia in the analytic result. 

It is interesting to ask what happens in the absence of the 
end mass. The calculated system behavior is less smooth. The 
energy plots show some asymmetry, and the period is less easily 
determined. All the results conserve energy (to at least 4 parts 
in 105); the problem is not numerical stability. As the number 
of segments increases the system becomes smoother and 
smoother, and the oscillations more and more sinusoidal. 
Moreover, the period has the same sort of asymptotic behavior 
as the heavy ended beam. I have calculated the frequency for 
N = 3,4, 5, 6, 8, 10, and 20 link beams, and they are linearly 
related to l/N. The N — oo dimensionless frequency of os
cillation is bounded by 0.99 < co < 1.02. The exact linear 
result for a fixed-free beam in these same units is 1.01499 .. . 
(cf., Tse et al., 1978, pp. 262 ff.) 

The linear problem sheds considerable light on the model. 
The frequencies of individual modes are apparently not com
mensurate. If the frequencies are incommensurate, even the 
behavior of the linear beam will not be periodic. In any case, 
periodic behavior with periods near the cycle time is not to be 
expected. Although the elastic energy is observed to be (ap
parently) periodic, the detailed motion cannot be periodic, and 
the elastic energy cannot be used as the sole diagnostic of the 
motion. A more useful representation is in a phase plane—0 
versus 0. For a restricted number of segments (I will concen
trate on a four-segment model), phase planes of one or more 
segments can be examined for evidence of periodicity. A circle 
represents purely sinusoidal motion, and a retraced figure rep
resents periodic motion. 

3.2 Nonlinear Behavior. 

3.2.1 The twenty segment beam of Gans (1989). This 
paper has been motivated in part by the special case I presented 
earlier (Gans, 1989). The initial tip position was x = 0.8 and 
y = 0.2. The free end of the beam was moment-free. The tip 
force was compressive, ten degrees from the vertical, a buck-
ling-type load. The computations used a 20-segment model 
and calculated the time evolution through one cycle of the 
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Fig. 2(c) 

Fig. 2 Phase planes for the first window of periodicity for force loading 
lH = 0.147; (a) shows time steps 1-603 and 604-1242, (b) shows time 
steps 31052-31696 and 31697-32303, (c) shows time steps 63777-64427 
and 64428-65041 

beam. The motion of the tip of the beam is apparently periodic 
but not sinusoidal, and the fundamental frequency of the mo
tion is 0.1629. This can be compared to 0.1581 calculated from 
the simple linear theory and 0.1620 from the (linear) frequency 
versus \/N relation discussed previously. 

While energy and tip motion appear smooth, the tip accel
eration shows dramatic spikes near the neutral position x = 
0, y = 1. These were associated with the appearance, or near 
appearance, of inflection points in the beam profile, what one 
might call incipient snap through. I repeated these calculations 
using the method described in this paper with a view to un
derstanding the behavior near the neutral position and deter
mining the reflection, if any, of the spikes in the elastic energy 
versus time plots. Even the fundamental frequency of the en
ergy is less easily determined here than in the work cited. (This 
is because the present method resolves the behavior near the 
neutral position, which was apparently unintentionally swept 
under the rug in the previous work.) The observed energy 
frequency lies between 0.1659 and 0.1689. Of interest is the 
dramatically violent behavior occurring near the minimum of 
elastic energy—near the neutral position x = 0, y = 1. The 
most dramatic of these correspond to the spikes in the accel
eration of the mass cited previously. 

The 20-segment beam is not ideal for exploring the quali
tative behavior of these systems. It requires the integration of 
a 38th degree nonlinear first-order system with a fairly dense 
interaction matrix. Numerical experiment shows that time steps 
need to be of the order of 0.0004 for the code to run, so that 
a single period in the energy requires of the order of 47,000 
time steps, a full cycle twice that. 65,536 even time steps took 
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Fig. 3 Radial tip acceleration tor the case of a beam initially bent double 

about six days on a Sun 3/50 workstation (albeit running in 
a network over which I have no control). A considerably sim
pler model will serve to explore the qualitative behavior of 
these systems, and I have chosen to use the four-segment beam. 
This reduces the system to sixth order, making it possible to 
explore longer time behavior. Not only is the effort per time 
step reduced, the size of the time steps can be increased. 

3.2.2 The Four-Segment Beam With M = 10. The main 
purpose of this section is to introduce the reader to some of 
the behavior displayed by the simple four segment beam. The 
beam behavior is certainly sensitive to initial conditions; how
ever, I am reluctant to introduce the word chaos at this time. 
Most of the standard tools of chaos analysis have been de
veloped for the understanding of forced dissipative systems, 
and are not applicable to the present system. (I have looked 
at some constant time interval Poincare maps; these do not 
seem helpful, as the beam behavior is never exactly periodic.) 
In future, forcing and dissipation will be added; at this time 
I explore only the free oscillations already mentioned. 

Choosing initial conditions by locating the tip of the beam 
is not particularly satisfactory. I have looked at all three equi
librium initial conditions mentioned previously: (1) a given 
force perpendicular to the beam (beam bending), characterized 
by the force magnitude fH, (2) a pure moment applied at the 
end of the beam, characterized by the elastic energy e, and (3) 
and a compressive (buckling) force parallel to the beam, char
acterized by the force magnitude fB. The first two of these 
have a linear region. Buckling is inherently nonlinear. One 
would expect quantitatively different behavior for these three 
conditions. 

The existence of linear solutions provides another static check 
of the code, as does a comparison with buckling stability. With 
the scaling introduced in this paper, linear continuous beam 
bending predicts a displacement of 4fH, and the continuous 
moment model predicts a deflection of 2V(3e/2). At suffi
ciently small values of fH and e, these are verified even for the 
four-segment beam. The critical buckling load for the fixed-
free beam is ir2EI/L2, which translates to 0.20562 ... (= T2/ 
48) in the present nondimensional system. The critical buckling 
load for the four-segment beam, which is stiffer, is observed 
(computationally) to be between 0.2640 and 0.2641. The tip 
position at 0.2641 is x = 0.01, y = 1.00, with an initial elastic 
energy of 0.00003. 

I have examined beam bending for/// from 0.035 up to 1.6. 
The most interesting observation is the existence of windows 
of almost periodic motion at/// = 0.147 and in the vicinity 
of/// = 0.704. The / = 0.147 case is clearly distinguishable 
from cases as close as 0.1465 and 0.1475. The latter is less well 
defined. The former period is twice the fundamental cycle time 
(four times the period of the elastic energy); the latter period 
is four times the fundamental cycle time. This almost peri

odicity is detectable by examining the phase plane diagram of 
the outer (fourth) link. Over a short period of time, every other 
complete cycle is the same within the resolution available from 
graphic representation. (This behavior is observed in the phase 
plane diagrams for the other two mobile links as well.) There 
is a slow drift, however, so that cycles separated by longer 
times are not identical. 

I have calculated the behavior of this case for 65,536 time 
steps, corresponding to a dimensionless time of 2791. Figures 
2(a)- (c) show the phase plane diagrams for link four for the 
first two cycjes, the middle two cycles, and the last two com
plete cycles. Family resemblances are obvious. There is evi
dence for a very long period oscillation converting the left-
right asymmetry in the first pair of figures to its mirror image. 
This is to be expected from symmetry. 

The period in the second window is four times the basic 
cycle time. Overlapping successive cycles show duplication at 
every fourth cycle. As in the doubled period case, there is a 
gradual shift of the overall asymmetry, presumably resulting 
in a very long period modulation or oscillation. The modu
lation period is shorter and the base period longer than those 
of the first window. This makes it more difficult to locate the 
window precisely. I've examined the range of/// from 0.7 to 
0.72. The neighborhood of 0.704 is clearly correct, but care
fully examination of phase plane diagrams from 0.7030 to 
0.7047 at intervals of 0.0001 does not allow a clear choice to 
be made. This is in distinct contrast to the first window, where 
overlapping cycles are clear. I've taken//, = 0.7043 as typical. 
(Considerations of space prevent my illustrating this part of 
the discussion.) 

I have found the first window of periodicity for both other 
types of initial loading. For the moment loading, it appears 
at e = 0.0138. The moment start-up case shows the difference 
between examining the phase plane and the bulk energy. The 
curves of elastic energy versus time are not smooth, although 
they appear periodic. There is an asymmetry between left going 
and right going half cycles, but there is no indication of period 
doubling. The beam bending case (fixed///) has a very smooth, 
apparently periodic, elastic energy versus time plot. The de
tailed phase planes for moment start-up are very different from 
the beam bending case, but the period doubling behavior is 
identical. There is an asymmetry that shifts on a long time 
scale. I have not looked for the next period doubling in this 
case, in part because the phase planes are sufficiently complex 
that the search, conducting using human pattern recognition, 
is quite difficult. Period doubling for the buckling load appears 
in a window at/^ = 0.2742. The plot of elastic energy versus 
time is neither as smooth as the beam bending case nor as 
rough as the moment case, although it does exhibit the left-
right asymmetry characteristic of the latter. Again I have not 
looked for the second window. 

4 Discussion 
The most dramatic behavior of the four-segment beam, and 

probably of the continuous beam as well, is the appearance 
of windows of near periodicity. The existence of windows is 
independent of the nature of the initial condition, although 
extremely sensitive to its magnitude in each case explored. 
There does not seem to be any unifying parameter for the 
different types of loading—neither energy nor tip offset. The 
initial energies for the three different cases are 0.0220, 0.0138, 
and 0.0211. That for the second window is much higher: 0.1229. 
The zero offsets for the three cases are x = 0.33, 0.24, and 
0.32, respectively. 

It is tempting to identify the windows of periodicity with 
windows of periodicity in the case of classical chaotic behavior, 
and the apparent repeated doubling of the period with respect 
to the fundamental cycle time with the period doubling route 
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to chaos. I mention these analogies here only because they leap 
to the eye. Further work is needed. 

The windows of periodicity have occupied most of the at
tention in this paper. There is no room for detailed discussion 
of the spikes and their correlation with snap through. I have 
looked at this question in a preliminary way. The four-segment 
beam shows less contrast than the 20-segment beam for com
parable energy levels. There is a gradual concentration of radial 
force as the magnitude of the initial condition increases. Figure 
3 shows a distinctive case. The initial condition is a constant 
moment sufficient to bend the beam over on itself, so that the 
tip starts at the origin. The energy associated with this is e = 
1.2337, and the resulting radial force contrast is immense. This 
work will be pursued in a later paper. 
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Flow Resistance and Mass 
Transfer in Slow Non-Newtonian 
Flow Through Multiparticle 
Systems 
Finite difference solutions for a power-law fluid flow through an assemblage of 
solid particles at low Reynolds numbers are obtained using both the free-surface 
cell model and the zero-vorticity cell model. It is shown that, unlike in the case of 
power-law fluid flow past a single solid sphere, the flow drag decreases with decrease 
of flow behavior index, and that the degree of this reduction is more significant at 
low voidage. The results from this study are found to be in good agreement with 
the approximate solutions at slight pseudoplastic anomaly and the available exper
imental data. The results are presented in closed form and compare favorably with 
the variational bounds and the modified Blake-Kozeny equations. Numerical results 
show that a decrease in the flow behavior index leads to a slight increase in the mass 
transfer rate for an assemblage of solid spheres, but this increase is found to be 
small compared with that for a single solid sphere. 

1 Introduction 
Slow non-Newtonian flow past an assemblage of solid spheres 

represents an idealization of many industrially important proc
esses. Examples of such flows include the flow of crude oil 
through porous rock, the flow of polymer solutions through 
sand and sandstone in tertiary oil recovery, the filtration of 
polymer solutions and flow of polymer solutions and melts 
through granular beds in catalytic polymerization processes. 

Several attempts have been made for modeling flow past an 
assemblage of spherical particles. The first approach is the 
classical capillary model to study the porous structure and is 
used to develop a modified Blake-Kozeny equation. Experi
mental data on pressure drop in fixed and fluidized beds have 
been correlated using the capillary model by a number of 
investigators (Christopher and Middleman, 1965; Gaitonde 
and Middleman, 1967; Gregory and Griskey, 1967; Marshall 
and Metzner, 1967; Yu et al., 1968; Siskovic et al., 1971; 
Kemblowski and Mertl, 1974; Mishra et al., 1975; Brea et al., 
1976, Park et al., 1976; Kemblowski and Michniewicz, 1979). 
Only a few theoretical studies of non-Newtonian fluid flow 
through multiparticle systems have been attempted so far. There 
is a definite need for studies related to obtaining precise in
formation on the local velocity distributions around solid 
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spheres in an assembly, in order to predict mass transfer in 
fixed and fluidized beds. 

The second approach to modeling flow through multiparticle 
systems is by the use of the cell model. According to this model, 
each particle, assumed to be uniformly spaced in the assem
blage, is enveloped by a spherical fluid cell which represents 
the interparticle interactions. The radius of this hypothetical 
surface is related to the voidage of the assemblage considered. 
In the free-surface cell model of Happel (1958), the shear stress 
vanishes on the cell surface. Kuwabara (1959) has proposed a 
zero-vorticity cell model in which a zero vorticity is imposed 
on the hypothetical surface. For Newtonian fluids, the cell 
model has been proved to be a simple and excellent model for 
the multiparticle system, especially in the case of packed beds. 
Cell model theory provides theoretical support for the validity 
of Darcy's law. It not only demonstrates the simple linear 
relationship between the flow rate and the pressure drop ob
served first by Darcy, but also gives numerical values for the 
proportionality coefficient which is very close to the experi
mental value. 

The free-surface cell model has been extended to power-law 
fluids and to Ellis fluid model by Mohan and Raghuraman 
(1976a, 1976b) and to Carreau fluid model by Chhabra and 
Raman (1984). They obtained upper and lower bounds on the 
flow resistance for an assemblage of solid spheres by using a 
combination of Happel's free-surface cell model and the var
iational principles. Kawase and Ulbrecht (1981) have obtained 
an approximate solution to the equations of motion for power-
law flow through an assemblage of solid spheres under the 
assumption that deviation from Newtonian flow behavior was 
very small. The cell models have been used to investigate the 
weakly elastic effects on the flow resistance of viscoelastic 
fluids through packed beds (Zhu, 1990; Zhu and Satish, 1991a). 
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In the present study, the equations of motion are solved 
using finite difference method by applying Happel's free sur
face cell model and/or Kuwabara's zero-vorticity cell model. 
In this work, the numerical solutions for the pressure drop 
and mass-transfer coefficient are obtained and then compared 
with the solutions based on the variational principles, ap
proximate analytical solutions, semi-empirical model obtained 
by extending the Blake-Kozeny equation and with the available 
experimental findings. 

2 Statement of the Problem and Numerical Imple
mentation 

It is assumed that the rheological behavior of the fluids can 
be represented by a power-law model: 

TU = 2K(2n.)ln-lV2Du (1) 

where r,y is the deviatotic stress tensor, D,j is the rate of de
formation tensor, AT is power-law fluid consistency index, n is 
power-law fluid behavior index, and the second invariant of 
the rate of deformation tensor, n , is given by: 

H = D2
rr+D2

ee + D2^ + 2D2
re. (2) 

The power-law model provides the simplest representation of 
shear thinning behavior but its inability to predict a constant 
viscosity in the limit of low deformation rate raises doubts 
about its suitability for describing creeping flow. The power-
law model is physically correct at high shear rates. The shear 
rates in cell model are usually high enough, especially in the 
case of low voidage, so that this model could be used to char
acterize the shear thinning behavior of the fluids (Satish and 
Zhu, 1991). 

The following nondimensional variables are introduced such 
that: 

D*- Dij 

" (V0/R)' 

* TU 
'" K(V0 /R)"' 

r 
= R' 

n* n 

(V0/R)2 

* P-Po 
P K(V0/R)" 

(3) 

where V0 is the superficial velocity and R is the radius of sphere 
particle. 

The stream function ^* is defined such that: 

t>t = 
1 3 * ' 

|2sin0 30 ve =-
i a** 

(4) 
£sin0 3£ 

* * 
where v% and vg are dimensionless radial and azimuthal velocity 
components, respectively. Eliminating the pressure terms in 
the equations of motion and introducing the vorticity co* in 
the equations, we obtain the following governing equations: 

E*2y*= co*£sin0 

(2IT) * \ ( n -1)/2£*2(co*£sin0) 

+ («-l)(2n*) ' ("-3 ) / 2 

air I a . . 
ae £2 de 

an* a 

3£ 3£ 

= 2(1 

(5) 

(co*£ sin0) 

«)F(£,0)sin0 (6) 

where 
JL. sin0 d LI 

sin0 30 
(7) 

(2n*) (»-3)/2; an*' 
de 

d_ 

'de 
W«-3)/2; an* + ^ (2n*)<"-3»/2^-,an* 

30 
(8) *«<2n') ai { 

The boundary conditions on the solid sphere surface are 
specified as follows: 

a t £ = l, Vi=Vg=Q (9a) 

and on the outer sphere surface, at J = s : 

vl = cosd (9b) 

D*(e = 0. (9c) 

Kuwabara's zero-vorticity cell model (Kuwabara 1959) assumes 
that the vorticity is equal to zero on the imaginary spherical 
surface. In this model, the following boundary condition is 
used instead of Eq. (9c). 

< / = 0 at £=s (9d) 

where s is the dimensionless radius of the cell related to the 
voidage of the multiparticle assemblage by the expression: 

'4-<- • « ) 

1/3 (10) 

In Eq. (10), R[ is the radius of the hypothetical fluid envelope 
and e is the bed voidage. 

When solving Eqs. (5) and (6), boundary conditions are 
required that specify ^* and co*. 

Along the axis of symmetry, 

0 = 0° and 0=180°, ¥* = 0, w* =0 . (11) 

On the sphere surface, 

£ = 1, * * = 0 , u* E*2r 
sin0 

(12) 

On the outer sphere surface, 

f=s, ** = •2 sin20 

co* =2(ve +sin0)A (for free-surface cell model) 
co* =0 (for zero-vorticity cell model). 

(13) 

(14«) 
(14ft) 

To obtain numerical solutions of the governing Eqs. (5) and 
(6), the finite difference technique was used. A small step size 
was used near the sphere since the stream function and vorticity 
vary very rapidly and a relatively large step size was found to 
be adequate far from the surface. This was achieved by using 
equal intervals in z(£ = ez) in Eqs. (5) and (6). The solution 
consists of the stream function and the vorticity fields. Central 
space differences were used and resulting finite difference 
equations were solved using the successive over-relaxation 
method (SOR). In order to verify the validity of the present 
numerical study, the numerical results were compared with the 
analytical solutions of their Newtonian flow counterpart for 
all the voidages considered. It was found that the stream func
tion was in agreement with analytical solution within 0.01 
percent and vorticity was within 0.1 percent and drag coeffi
cient was satisfied within 1-2 percent. 

3 Results and Discussion 
3.1 Flow Drag. The surface pressure is calculated using 

the following relation: 

A(e)=A + f(2n*)<"- l)/2 dco 
+ C0 1 + n-\ air 

211* dz 
dd 

z = 0 

(15) 

where 

Pi =2 {
Ins 

(211*) 
n 

(n-l) /2 3co 

"a7" 
(H-i)z?Kan* 

2n* dz 
dz. (16) 

The flow drag on the solid sphere is given as: 

FD = 2irR2 I TT pi" 

( -p)r=Rcosd sin0 dO- (Tr9)r=R = sm2ddd 
0 J 0 

= 2irR2K(V0/R)nD0 (17) 
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^ 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.99 

n = 

Free 
Surface 

10.40 

6.26 

4.12 

2.87 

2.09 

1.59 

1.32 

= 0.5 

Zero 
Vorticity 

14.45 

8.65 

5.77 

4.04 

2.87 

2.04 

1.45 

n = 

Free 
Surface 

15.82 

9.00 

5.61 

3.72 

2.57 

1.84 

1.38 

Table 1 YD as function of i and n 

= 0.6 

Zero 
Vorticity 

21.06 

12.15 

7.67 

5.07 

3.44 

2.32 

1.50 

n = 

Free 
Surface 

24.07 

12.91 

7.63 

4.81 

3.16 

2.11 

1.42 

= 0.7 

Zero 
Vorticity 

31.08 

16.97 

10.18 

6.42 

4.15 

2.65 

1.55 

n = 0.8 

Free 
Surface 

36.65 

18.48 

10.34 

6.18 

3.85 

2.42 

1.46 

Zero 
Vorticity 

46.01 

23.80 

13.53 

8.13 

4.99 

3.00 

1.59 

n = 

Free 
Surface 

55.75 

26.45 

13.89 

7.93 

4.68 

2.76 

1.48 

= 0.9 

Zero 
Vorticity 

68.28 

33.34 

18.00 

10.28 

6.00 

3.40 

1.60 

n 

Free 
Surface 

84.92 

37.89 

18.92 

10.15 

5.66 

3.11 

1.48 

= 1.0 

Zero 
Vorticity 

101.65 

46.77 

23.91 

12.97 

7.18 

3.78 

1.60 

where 

IT 

Ps 
0 

(d)cosdsmddd- { •n 

0 

=0sin26d6. (18) 

The drag coefficient for non-Newtonian fluid behavior is 
therefore 

F z , - 2 4 / R e ' - 6 A 

where CD is given as 

C n = -
•PVUR2 

(19) 

(20) 

and Re' is Reynolds number for power-law fluid defined as 

pV2
0-

n(2R)" 
Re'=-

K 
(21) 

In (20) and (21) p is the density of fluids. 
From the force equilibrium on the cell, we can obtain the 

pressure drop as 

Ap FD 3KVnoD0{l-e) 
L 

TR\ 
2Rl 

(22) 

The computed results for YD based both on the free-surface 
cell model and on the zero-vorticity cell model are given in 
Table 1 for various values of the bed voidage e and the flow 
behavior index n. It can be seen that the zero-vorticity cell 
model predicts slightly higher drag coefficient than the analysis 
based on the free-surface cell model. This occurs because the 
zero-vorticity cell model yields a large energy dissipation in 
the envelope than that due to the particle alone, owing to the 
additional work done by the stresses at the outer boundary. 
The work is done on the surroundings, which induces extra 
dissipation of energy. Figure 1 shows YD as a function of n 
for various values of e for free-surface cell model simulation. 
As may be expected, the shear thinning behavior results in a 
decrease in drag coefficient. The reason is mainly because 
smaller porosity causes stronger shear and hence stronger re
duction in the flow drag. The degree of reduction becomes 
weaker as the voidage becomes larger. 

The theoretical predictions based on the variational principle 
presented by Mohan and Raghuraman (1976a) and the ap
proximate solutions of Kawase and Ulbrecht (1981) are also 
shown plotted in Fig. 1. Mohan and Raghuraman (1976a) have 
obtained bounds on the flow drag by the use of variational 
principles and the arithmetic averages of their predictions are 
shown in Fig. 1. It can be seen that the results from the present 

1 0 l 

Free-surface cell model 

Present computation 

Kawase & Ulbrecht (1981) 

Mohan & Raghuraman (1976) 

£ =0.99 

0 . 7 0 . 9 1 .0 

FLOW INDEX n 

Fig. 1 Effect of non-Newtonian flow behavior index on the drag coef

ficient 

analysis fall within the variational bounds of Mohan and Ragh-
uraman's (1976a) predictions. As may be expected, when the 
flow behavior index n is far from 1, (i.e., I« - 11 = 0(1)), 
discrepancy between the present predictions and the approx
imate solutions of Kawase and Ulbrecht (1981) is evident. It 
may be noted that Kawase and Ulbrecht (1981) have assumed 
that the deviation from Newtonian flow behavior is slight (i.e., 
\n - II « 1). The bigger the value of In - 11, the larger 
will be the discrepancy between the two solutions. Further, we 
may infer that the approximate solutions of Kawase and Ul
brecht (1981) are accurate for predicting the flow drag of non-
Newtonian fluids when the shear thinning behavior of fluids 
is slight and overestimate the flow drag coefficient as 
I n - 11 increases. It can also be seen that the plot of log (YD) 
is almost linear with the flow behavior index n. This result 
implies that non-Newtonian flow behavior has little influence 
on the flow field inside the cell and the drag reduction is mainly 
caused by the reduction in viscosity due to the shear thinning 
behavior. A similar phenomenon has been found in the case 
of swarm of bubbles (Zhu and Satish, 1991b). 
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Fig. 3 Effect of non-Newtonian flow behavior index on the mass trans
fer rate 
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Fig. 5 Effect of non-Newtonian flow behavior index on the normalized 
mass transfer rate 

Figure 2 shows YD as a function of voidage e at different 
values of flow behavior index n. It can be seen that the drag 
coefficient decreases as the bed voidage increases and the de
gree of this reduction becomes less significant as the pseu-
doplastic anomaly of fluids becomes stronger. This result 
indicates that the shear thinning behavior of fluids results in 
a reduction of the voidage .effect on the drag coefficient. 

3.2 Mass Transfer. The present study provides the precise 
information on the local velocity distributions around the solid 
sphere, which could be used to predict the mass transfer rate. 
A theoretical prediction of the mass-transfer coefficient around 
a solid sphere can be obtained by using the thin concentration 
boundary layer approximation of Lochiel and Calderbank 
(1964) 

.2/3 

Sh/Pe,/J = 0.641 (-ve )f (fr = 1sin3/2rMl (23) 

where Sh denotes Sherwood number defined as k(2R)/D and 
Pe is the Peclet number defined as V0(2R)/D. In these defi

ne ) f = i V I z = 0- (24) 

nitions, k is the mass transfer rate and D is the molecular 
diffusivity. (v*e')j = i is the gradient of azimuthal velocity com
ponent on the sphere surface and can be evaluated as follows: 

dve 
a* *-. 

Equation (23) together with (24) gives the relationship between 
the rate of mass transfer and the flow behavior index n as well 
as the bed voidage e. The use of this equation is restricted to 
the regime of high Peclet number and low Reynolds number. 

Numerical predictions of the Sherwood number, Sh, cal
culated from Eq. (23) are plotted in Fig. 3 as functions of flow 
behavior index n at different values of bed voidage e and in 
Fig. 4 as functions of bed voidage e at different values of the 
flow behavior index n. It is found that the zero-vorticity cell 
model predicts slightly higher mass transfer rate than the free-
surface cell model. It can be seen that the value of the Sherwood 
number for multiparticle systems increases slightly with the 
decrease in the value of the flow behavior index. However, 
this increase is small compared with that for a single solid 
sphere and thus the ratio Sh(«, e)/Sh(«, e = 1) decreases with 
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the decrease of n, as shown in Fig. 5. It can also be seen that 
an increase in the bed voidage causes a decrease in the mass 
transfer rate. 

4 Comparison with Experimental Results 
It is convenient to express the drag coefficient in terms of 

more familiar quantities, namely friction factor/and Reynolds 
number Re ' . The friction factor / i s defined as 

.3 

/= 
Ap IRz6 

(25) 
L pVi(\-e) 

Combining Eq. (25) with Eq. (22), we can obtain 

fRe' = \%<?YD. (26) 

Christopher and Middleman (1965) have defined the mod
ified Reynolds number R e m i n developing the modified Blake-
Kozeny equation as follows: 

2RpV2
0~" 

Rer-
150 i / ( l - e ) 

where H is a factor which accounts for the non-Newtonian 
behavior, given as 

12\ n 
2Re 

1-e 

2\ d-n) 

After simplification, it follows that 

/ R e C M = 
36 e1+2" 

25(9 + - ] V 

(28) 

(29) 

Substituting YD from Eq. (19) into Eq. (29), the relationships 
between / and Rec*f may be easily established. These rela
tionships are compared in Figs. 6(a) and 6(b) with the ex
perimental data obtained by Christopher and Middleman (1965) 
using a fixed bed of voidage e = 0.37 and an aqueous solution 
of carboxymethylcellulose (CMC). 

Kemblowski and Dziubinski (1978) have defined the Reyn
olds number as follows: 

Re*-n = 
2RpV\~r' 
H(l-e) 

= 150 ReCM. (30) 

The experimental results of Kemblowski and Dziubinski 
(1978), for the flow of molten polypropylene through packed 
beds of steel spheres of diameter 2.45 mm and 3.0 mm, are 
compared with the present model in Fig. 7. The bed voidages 
were not given in their paper. For randomly packed bed of 
uniform spheres, the voidage was estimated to be around 0.4. 
In Fig. 7, both free-surface cell model and zero-vorticity cell 
model predictions for e = 0.35 and e = 0.45 are plotted. It 
can be seen that cell model predictions show little voidage 
dependence on the friction factor-Reynolds number relation
ship. From Figs. 6 and 7, it can be seen that the cell model 
successfully predicts the friction factor for the flow of power-
law fluids through multiparticle systems at low Reynolds num
bers. 

Now, one can compare the present computational results 
with several modified Blake-Kozeny equations which are semi-
empirical and successfully used in predicting the flow drag in 

' experimental data correlation. The modified Blake-Kozeny 
equation using the "capillary model'' was given by Christopher 
and Middleman (1965) 

/ R e 7 ( l - e ) = G,(H,e) (31) 

(27) where 

G 1 ( n , e ) = 1 2 . 5 ( 9 + - j (1 -e)"-1e2(1"~',). (32) 
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BED VOIDAGE E 
Fig. 8 Correlations for the pressure drop of power-law fluid flowing 
through multiparticle systems 

The value of Eq. (31) in correlating the experimental data, has 
already been established by several authors (Christopher and 
Middleman, 1965; Gaitonde and Middleman, 1967; Marshall 
and Metzner, 1967; Siskovic et al., 1971; Yu et al., 1968, 
Kemblowski and Mertl, 1974; Mishra et al., 1975). 

Kemblowski and Michniewicz (1979) have proposed an im
proved relation, which was shown to be more rigorous in 
correlating with the experimental data. It can be written as: 

/ R e 7 ( l - e ) = G2(«,e) (33) 

where 

G2(«,e)=180(15V2)"-1(^^-J ( 1 - e ) " - ^ 1 - " ' . (34) 

Equation (26) from the present analysis may be written as 

/ R e 7 ( l - e ) = G3(«,e) (35) 

where 

G,(n,ej=-^- YD. (36) 
(1-e) 

In Fig. 8, comparisons of Gly G2, and G3 as functions of 
bed voidage e are shown. When the bed voidage is less than 
0.7, it may be seen that the cell model's prediction shows a 
fair agreement with Christopher and Middleman's equation 
and a closer agreement with Kemblowski and Michniewicz's 
relationship. This is consistent with the fact that the cell model 
predicts flow drag with reasonable success in the case of e < 0.7 
for Newtonian fluids. The cell model's prediction overesti
mates the flow drag in fluidized beds whose porosities are 
higher than 0.7. This perhaps corresponds to the special con
dition which minimizes the particle-agglomeration effects since 
agglomeration effects result in reduced values for the flow 
drag. Hence, it is observed that the cell model can be applied 
to predict the flow resistance of both the Newtonian fluids and 
the power-law fluids with equal success. 
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5 Conclusions 
Flow problems of power-law fluid through multiparticle sys

tems under the creeping flow conditions are solved by finite 
difference method. The results of the present study indicate 
that the cell model is an excellent alternative approach to the 
capillary model in analyzing the creeping flow of non-New
tonian fluids in a particle assemblage. A definite advantage of 
the cell model is that it can predict the precise local velocity 
information around solid spheres in the assemblage which can 
be used to obtain mass transfer in packed beds. 

The present analysis indicates that the zero-vorticity cell 
model predicts slightly higher drag coefficient and mass trans
fer rate than the free-surface cell model. It is also predicted 
that the reduction in the drag coefficient due to the pseudo-
plasticity of the fluids is more significant for lower voidage 
assemblages and that the shear thinning behavior of fluids 
results in a reduction of the voidage effect on the drag coef
ficient. The predicted reduction of the friction factor due to 
the shear thinning behavior of the fluids is in fair agreement 
with (a) the experimental findings, (b) the available theoretical 
solutions based on the variational principle, (c) the approxi
mate analytical solutions in slight non-Newtonian condition, 
and (d) the most reliable semi-empirical correlations for the 
flow resistance in fixed and fluidized beds. 

In the present study, the mass transfer rate for multiparticle 
systems have also been computed. It is shown that the mass 
transfer rate for the multiparticle systems increases due to the 
pseudoplastic anomaly of the fluids, but the enhancement in 
mass transfer rate is small compared with the case of a single 
solid sphere. 
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Free-Surface Oscillations in a 
Slowly Draining Tank 
The initial behavior of a free surface in a draining (filling) circular tank is analyzed 
using a linearized model. The withdrawal (injection) of fluid damps (enhances) 
oscillations which either exist before the withdrawal (filling) or are induced by the 
withdrawal (injection). The initial growth rate of the drainage-initiated free-surf ace 
oscillations strongly depends on the initial behavior of the drain rate function. If 
the drain is turned on gradually, the drainage-initiated free-surface oscillation is 
weaker compared to the forced one, so there are no drainage-initiated oscillations. 
However, if the drain is turned on suddenly, the induced oscillatory motion dom
inates the forced motion. For periodic drainage, the results show that the strongest 
resonant oscillation occurs when the drainage frequency o> coincides with the first 
natural frequency of the flow system. A11 of the nonresonant modes of the oscillations 
are stable regardless of the initial behavior of the drain rate. If q(t) = sinoit, all 
of the resonant oscillations are stable. In the case when q(t) = cosut, the initial 
jump in the drainage means that the resonance modes can be either unconditionally 
unstable, unconditionally stable, or conditionally unstable, depending on the various 
parameters. 

1 Introduction 
Recent numerical results (Zhou and Graebel, 1990) show 

that a jet forms in the center of a free surface in a cylindrical 
tank when it is slowly drained with a constant drain rate. The 
strength of the jet appears to depend on the initial height of 
the free surface. Small initial height h0 results in a strong jet. 
For example, the tip of the jet rises for h0 = 0.35, while it 
moves down with the mean free surface for h0 = 1. 

Miles (1962) investigated the effect of the drainage on the 
free-surface oscillations, and concluded that withdrawal of 
fluid from a cylindrical tank damps the oscillations on the free 
surface. His conclusion does not distinguish oscillations which 
may exist initially from those induced by the drainage. Saad 
and Oliver (1964) used a linearized model, with inertial terms 
completely neglected, to study the motion of the free surface 
in both a circular and a rectangular tank under constant drain 
rates. Effects of surface tension were included. For zero surface 
tension, their results concluded that both withdrawal and in
jection of fluid cause the free surface to oscillate if the drain 
rate is less than a critical value. The induced free-surface os
cillations grow exponentially if fluid flows out of the tank, 
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and are exponentially damped if fluid flows into the tank. If 
there is no surface tension, their results also concluded that 
higher-order modes with large wave numbers are nonoscilla-
tory. Their results are thus opposite to that of Miles. 

In this paper, a model which includes a linearized inertial 
term is used to study the unsteady motion of the free surface 
in a circular draining or filling tank. The modal amplitude 
functions are obtained using perturbation techniques valid for 
predicting the long-time behavior of the free-surface motion. 
Emphasis is on the influence of draining or filling on free-
surface oscillations which may exist initially or are initiated 
by the draining or filling, as well as on the effect of the initial 
behavior of the drain rate on the oscillation amplitude. The 
resonant responses of the free surface to a simple-harmonic 
drainage with various resonant frequencies and their stability 
are also examined. 

The paper begins with the fundamental equations and 
boundary conditions described in Section 2. In Section 3, two 
special cases are studied. A summary of the results is presented 
in Section 4. 

2 Basic Equations and the General Solution 
We consider an inviscid, incompressible fluid contained in 

a circular tank of radius R. The top surface of the fluid is 
open and is stress-free. Surface tension is assumed negligible. 
A sink of finite radius a is located at the center of the tank 
bottom. The sink is taken to have a strength Qq(t), where Q 
is the absolute value of the maximum strength, and q(t) rep
resents the time variation of the sink strength with unity max
imum absolute value. If q(t) is negative, fluid is withdrawn 
from the tank. If q(t) is positive, fluid enters the tank. 

Since the fluid is inviscid and incompressible, and the initial 
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state of the flow is assumed free of vorticity, a velocity potential 
exists. Moreover, we assume that the flow is axisymmetric. We 
choose the radius R of the tank as the characteristic length, T 
= \JR/g as the characteristic time, and U = \fgR as the 
characteristic velocity. The potential is scaled by RU. In the 
dimensionless units, the radius of the tank is unity, the sink 
radius is denoted by a, and h(t) is the mean elevation of the 
free surface. By continuity, the mean height is given by 

F f' 
hU) = ho+- q(r)dr, (1) 

where h0 is the initial height of the free surface, and F is the 
Froude number defined by 

e F=- (2) 

The total velocity potential is 

4>totdr,z,t)=<j>(r,z,t) + h(t)z (3) 

where 0 is the perturbed potential which satisfies the axisym
metric Laplace's equation. 

The free-surface elevation is of the form 

zf(r,t)=h(t)+v(r,t) (4) 

where 77 is the perturbed free-surface elevation. In order for 
the linear assumption to be valid, it is assumed that lrj(r,0 I, 
IVijI.and \v<t>(r,h(t),t)\ are all small. 

The boundary conditions on the tank side wall and the bot
tom are 

d<t> dd> 

Tr ( W ) = ¥ ( (W) = ° (5) 

and 

T-(r,0,t)=\ . (6) 
oz i~h(t) a<r<\ 

where v0(r) is the dimensionless normal velocity distribution 
in the sink area which, according to (3), is constrained by 

( rv0{r)dr=^-. (7) 

The linearized free-surface kinematic and dynamic boundary 
conditions are 

d(j> dri -f = fonz = h (0, 
dz dt 

(8) 

and 

d6 • dd> 
Yt + h(t)Yz + V(r,t) =0 on z = h(t). (9) 

The initial conditions are taken as expansions of the form 
00 00 

<t>(r,h0,0) = 2 amJ0(kmr), and 7j(r,0) = ^ ] &mMkmr) 

(10) 

where am and /3m are known constants once <t>(r,ho,0) and ij(r,0) 
are specified. If the flow starts from rest, then am = I3m = 0. 

The potential satisfying (5)-(6) is 
00 

4>(r,z,t) = J] Mkmr) {FRmq(t)smh(kmz) 
m = l 

+ Dm(t)cosh(kmz)}, (11) 

where km is the wth root of the first-order Bessel function, 
and the Rm are constants given by 

R, , = 2 rv0 (r)Mkmr)dr/[knJl(km)]. (12) 

If we define 

ym(t) =FRmq(t)smh(kmh(t)) +Dm(t)cosh(kmh(t)), (13) 

then the perturbed free-surface elevation is, from (9), 

dt 
(14) 

and the perturbed surface potential is 

4>(.r,h(t),t) = J] ym(t)J0(kmr). (15) 
m = l 

From (8), (9), (11), and (14), we obtain 

f + kmtanh(kmh (t))ym=-F * r f r g , ( ^ s • (16a) d \ 

From (10), (11), (13), and (14), it follows that 

dym(P) 0 ym(P) = am, 
dt 

(16ft) 

3 The Amplitude Functions for Small Froude Number 
The frequency of any oscillation governed by Eq. (16a) will 

not be constant. A general solution of (16«) is difficult to 
obtain even when q(t) is a constant. In the following, we seek 
perturbation solutions of (16«,ft) based on expansions in F. 

Free-surface oscillations can be caused either by initial con
ditions, or by the draining or filling of the tank. In this section, 
we study these mechanisms under the assumption of small 
Froude number F. We examine the dynamic response of the 
free surface to a power-law withdrawal rate, and also to pe
riodic excitations (e.g., q(t) = cosut or sincoO. including the 
resonance case when the excitation frequency co is a multiple 
of the system's natural frequency. 

3.1 Case 1: Power-Law Drainage. We consider first the 
case where q(t) is of the form 

(17) 

where t0 is the time duration of interest and / is a non-negative 
integer. Thus, 

h(t)=ho±(et)'+1, where e-
TT( /+1 )4 

1 

(18) 

The plus sign is chosen if the tank is being filled, and the 
negative sign if the tank is being emptied. Since e « 1, it is 
necessary that F « tfa. This condition can be easily satisfied 
if, for example, t0 > 1. 

Equation (\6a,b) can be solved by a multivariable expansion 
technique. We define two disparate times by 

i = [ Jkn Xanh(kmh(T))dT, and t2 = et. (19) 

Here, tt is the fast time (of the same order as t) and t2 is the 
slow time scale. We take the solution in the form 

ym(t) = J] e"Gn(tyh). (20) 

Substituting (20) into (16a,b), and using the two-variable per
turbation technique, we have 

dti 
3Gk 

V' kmtanh(kmh) 

( ± ) 
dtidt2 

km(l+l)t'2 dGt . ! 
2sinh(2fcm/!) dt{ 

(/+ \)itRj2 

sinhOtm/i) *•' 

1 3 Gx_2 

kmtaoh(kmh) dfi 
(21a) 
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with 

and 

aQt(0,0) 

Gk(0,0) = am8ki0, 

1 aG,_!(0,0) 
dt, + &A,0 

dt, y] kmtanh(kmh0) 

The solutions of (21a) are then of the form 

G„(tut2) = A„(t2)co&ti + Bn(t2)&mtl + y„(t2) 

where y„(t2) are given by the recursion equation 

1 d2y„(h) 
ln + 2<,t2)= -

with the starting values 

kmt&nh(kmh) di$ ' 

7 o f c ) = 0 ) T i f e ) = - ( ± 
(1+1)TTRJ2 

(21b) 

(21c) 

(22) 

(23a) 

(236) 
sinh(kmh) 

Equations (23a,b) indicate that y2„(t2) = 0 for any integer n. 
In (22) A„(t2), B„(t2) are given as 

A0(t2)=amC(t2),B0(t2)=- — ^mC(h) , (24a) 
\l kmtanh(kmh0) 

A„(t2) = C(t2) A„(0) + 

Bn(ti) = C(t2) BM- r 
I ( T ) C ( T ) 

2\fkmtanh(kmh0) 

AH-I(T)C(T) 

o 2V' kmtanh(kmh0) 

dr 

dr 

(24b) 

(24c) 

where 

An(0)--

and 

- y M , B M = - ^ M ^ M , n * l , (24d) 

C(t2) = 

Vkmtanh(kmh0) 

tanh(kmh0) 

tanh(kmh) 
(25) 

For high order modes (m —• oo), fcm approaches °°, hence 
C(?2) will approach 1. All of the An(t2), B„(t2) will approach 
0 except A0, which is constant, and t\ will approach 
\Jkmtanh(kmh0)t, with y„(t2) approaching 0. Thus, high order 
modes do not feel the influence of the sink, and are equal to 
the natural modes of standing cylindrical free surface waves 
of constant depth h0. This is because the high order modes 
have wave lengths which are small compared to the depth, and 
so the influence of the sink decreases. This conclusion is in 
disagreement with Saad et al. (1964), who concluded that higher 
order modes were non-oscillatory. Similarly, for large depths, 
variation in the depth is not important, and the oscillation is 
similar to a constant depth case. 

The leading order solution G0(ti,t2) depends on the initial 
disturbances in the flow. If q(t) = 0, h(t) would equal its 
initial value h0, and C(t2) = 1. Consequently, G„(t\,t2) = 0, 
n - 1, 2, • • • . This solution is precisely that of the natural 
oscillations of a free surface in a circular tank without drainage. 
If the flow starts from rest, then G0(tut2) = 0 since <xm = (3m 

= 0. The oscillations in this case are initiated solely by the 
drainage, and will hereafter be called drainage-initiated oscil
lations. 

Free surface oscillations responding to the initial disturb
ances are given by 

V(.r,t) •• •• 2 } am [^tanh(fc„,/!0) tanh(kmh) ] 1/4sin/, 
m = 0 

+ /3„ 
tanh(kmh) 

costAj0(kmr) + O(e) (26) 
tanh(kmhQ) 

Equation (26) shows that the amplitudes of the oscillation due 

to the initial disturbance decay (amplify) if h(t) decreases 
(increases). Therefore, withdrawal of fluid from the tank damps 
any free surface oscillations which exist initially. This conclu
sion is consistent with the result of Miles (1962). Equation (26) 
also shows that the faster h(t) decreases (increases), the faster 
the initial disturbance decays (magnifies). Since h(t) decreases 
at the fastest rate if / = 0, the sudden withdrawal of fluid with 
a constant rate has the maximum damping effect on the initial 
free surface oscillation, provided thatFis kept the same. More
over, a larger drain rate (which results in a larger F) produces 
larger damping. Generally speaking, for a drain rate q(t) with 
the behavior q(t) ~ t1 for small t, the initial behavior of the 
free surface motion will be characterized by (26). Therefore, 
for the initial moment the above conclusion is valid for any 
drain rate q(t). 

Although withdrawal of fluid damps any oscillations initially 
present, it generates new forced oscillations on the free surface 
(i.e., drainage-initiated oscillations). Drainage-initiated free 
surface oscillations can be examined by taking am = (3„, = 0, 
m = 1, 2, . . . It is clear from (23a) and (236) that y„(t2) = 0, 
n = 0, 1, . . . , /, and that 

7 / + i ( 0 ) = - ( ± ) 

7 * 0 ) = - ( ± ) -

(-l)HRm(l+l)l 

[kmtanh(knho)]'/2&mh(kmh0) 

if / = 0 , 2, 4, . . . (27a) 

(-l)iirRm(l+l)l 

i-i 

[kmtanh(kmh0)]
 2 smh(kmh0) 

if 1=1, 3, 5, (27b) 

From (24a-d), we have that A„(t2) = Bn(t2) = 0, n = 1, 2, 
. . . , / , and 

^1 /+1(0)= - 7 / + i ( 0 ) , B,+ 1(0) = 0, if / = 0 , 2, 4, 

7/(0) 

(28a) 

5/+i(0) = ^4/+i(0) = 0, 
V' kmtar\h(kmh0) 

i f / = l , 3 , 5, . . . (286) 

The drainage-initiated free surface oscillation is 

V(r,0 = 2 / j 2 MknrnkltanhtfMtanWknh)]1'4 

x [ [ l + ( - l ) ' M , + 1 ( 0 ) s i n ? 1 - t l - ( - l ) ' ] 5 , + 1(0)cos/1) 
oo L 

- 2 J Mkmr) J ] e2"+2y2n+l(t2) + 0(Fe) (29) 
m = 0 « = 0 

in which L = (I - l ) /2 if / = odd, L = 1/2 - 1 if / is a 
positive even integer, and L = 0 if / = 0. 

The double summation terms in (29) represent the forced 
solution. The drainage-initiated oscillations which are de
scribed by the single summation are of order F regardless of 
the value /. The amplitude of the drainage-initiated oscillation 
again damps for an emptying tank. From Eqs. (27a)-(286) the 
amplitudes of high order modes are seen to be negligible due 
to large km. Thus the contribution of high order modes towards 
the drainage-initiated free surface oscillation are not impor
tant, and the lower modes are sufficient to describe the free 
surface shape. 

The complete response of the free surface to the initial dis
turbances and the drainage is the sum of (26) and (29). Unless 
h0 is very small, i.e., the tank is either very shallow, or else 
the tank is rapidly drained, the initial disturbance-induced 
oscillations given by (26) will dominate overwhelmingly. Hence, 
in the presence of initial disturbances, the drainage-initiated 
oscillations can be neglected. 
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In the absence of initial disturbances, the visibility of the 
drainage-initiated free-surface oscillations depends on the rel
ative importance of the forced solution terms and the oscil
latory terms. Equation (29) shows that the drainage-initiated 
oscillations are proportional to F, and are independent of /. 
The forced solution is 

S e2" + 272n+1('2) = ( ± ) 
n = 0 

F2 Rmkmcosh(kmh) 

•K sinh2(fcm/0 
+ 0(F4), 

when/=0 , (30a) 

S *2n+2y2nUh)= 

FRm^ ( - I ) " / - • • ( / - 2 n ) / / -
- + 0 ( t t ) , „tanh(ftm/i) ]"sinh(/rmA) 

w h e n / s i . (306) 

The free-surface elevation (29) then becomes 

( ± ) * » 
^r^=FTi Mkmr)-smh(kmh0) 

X[^tanh(fcm/i0)tanh(A:m/!)]1,'4sin/1 + O(/ ; 2) , / = 0 , (31a) 

i-1 

(-l)2Fl\ =o 
i»(r,/) = ( ± ) T — T, RmMkmr) 

r° m = i 

Jfcmtanh(A:ra/!)]
 2 sinh(Arm/i) 

C_1(/2)cos/i 

[£mtanh(fcm/!0)]
 2 sinh(£„,/!0), 

4 . < ± £ v » / / * . ^ 2 ( - ! ) " / • • • ( / -2«) / ; - 2 "- 1 

<£ £ , ^ " l * " " £ 0 [fcmtanh(^)]"sinh(A:m/!) 

+ 0 < F e ) , / = l , 3 , (316) 

(-1)2F/! o. 
V(r,t)= - ( ± ) 1 J ] RmMkmr) 

'o r r , 

[A:mtanh(A:m/!)]'/2"1sinh(A:m/!) 

C-^/zJsin/j 

( ± ) F 

[fcmtanh(Arm/!o)]'/2 'sinh(£m/!0) 

1/2-2 (_ i )« / . . .(l-2n)t'-2"-1 

+ —J— J) RmMkmr) Y] — 
,tanh(A:m/!) ] "sinh(ArmA) 

+ 0 ( F E ) , / = 2 , 4, (31c) 

Equations (31a-c) show that drainage-initiated free-surface 
oscillations dominate the main character of the flow only if 
the sink is turned on suddenly (i.e., / = 0). If the flow is started 
in a gradual manner in a draining tank (i.e., / > 1), the drain
age-initiated oscillations are overshadowed by the forced mo
tion. Because in a draining tank h(t) decreases, the oscillatory 
part of the motion decays while the forced free-surface motion 
magnifies. Initially, these two effects balance each other. Os
cillations can be appreciable only in a filling tank where h(t) 
is an increasing function of /, where oscillations are magnified 
while the forced motion decays, resulting in the eventual dom
inance of the oscillations. The asymptotic free-surface motion 

in a filling tank is the combination of a mean surface motion, 
which elevates the mean surface, plus oscillations. Equations 
(31a-c) clearly show that the asymptotic oscillations in a filling 
tank are standing waves. 

Furthermore, (31/?) and (31c) show that a large / magnifies 
the difference between the forced motion and the oscillations 
so that it produces greater dominance of the forced motion 
over the oscillations, thus making the oscillatory motion less 
visible. Therefore, turning on the sink gradually can reduce 
the drainage-initiated free-surface oscillations. 

Equation (31a) shows that the drainage-initiated free-surface 
oscillations decay in an emptying tank and grow in a filling 
tank. Therefore, the present analysis does not support the 
conclusion obtained by Saad et al. (1964) that drainage-initi
ated oscillations amplify (decay) in an emptying (filling) tank. 
The disagreement is caused by two factors: (a) neglect or in
clusion of the linearized inertial term; (b) the method of finding 
the amplitude function. In the present study, the linearized 
inertial term is retained and the amplitude function is valid 
for predicting long-time behavior. Saad and Oliver's solution 
was obtained by complete neglect of the inertial terms and by 
replacing the variable coefficient by a constant in Eq. (4.1) of 
their paper, which is seen to be inappropriate for the present 
problem. 

Equation (31a) also indicates that for small initial height, 
the drainage-induced oscillations are strong. In the nonlinear 
numerical simulation (Zhou and Graebel, 1990) it was found 
that for F = 0.1, h0 = 0.35 results in a jet stronger than that 
when h0 = 1. Although the phenomenon of the jet formation 
is highly nonlinear, (31a) may suggest that the strength of the 
jet, which occurs only when F is small, depends on the am
plitudes of the drainage-initiated oscillations and is closely 
related to the free-surface oscillations. The kinematic mech
anism of the formation of the jet is that more fluid flows 
towards the central region than the rate of withdrawal, hence 
part of the fluid flowing towards the center must move up 
relative to the mean surface to form a jet. When the oscillation 
is strong, more fluid will flow towards the center and results 
in a strong jet. 

3.2 Case 2: Periodic Drainage. We study next the case 
when the drain rate function is a simple harmonic function. 
Two cases will be solved, i.e., the drain rate is a sine or a 
cosine function. In both cases the flow is started from rest. 

Assuming that 

q(t) =cosojt, h{t)=h0 + esinoit, where e- (32) 

in which to is a constant, it is expected that if for some m, u 
= Vtanh(£m/!0) + 0(e) , resonant behavior will appear re
sulting in large oscillations. 

In the following, we expand 

kmtaah(kmh (t)) = oi2
m + J] e"a„sm"cot, 

oim = y/kmtanh(kmh0), (33a) 

irakmR„ 
" = I J t"bnsmnut. (336) 

cosh(kmh) n=0 

The values that we will use are 

ai = k2
m-</m,a1=-u2

ma\, b0 = irwRm\Tai, /?, = -w2
mb0. (34) 

Note that at is always positive and a2 is always negative. u>m 

is the mih natural frequency of the-free-surface oscillation. 
By virtue of (33a,6), Eq. (16a) can be transformed into 
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,/2 « In terms of the new variables t, and t2, we can write 
-^r+«4ym = - ^ 2 J «Xsm'W a2G_ i 

2 e'1+16,,sin'Wcoscor\ (35) _2| 

!ti ' ~" co' 

2 + G _ ! = 0, (41a) 
«'i 

3 Go _ «i _ 
T+G0=—jdsrn/i, (41ft) 

a2^ 
If co ?* com and co ^ 2com, we may assume that the solution to t 

(35) is of the form §_9l , r - °2 r ^2t 0} r dnt 

j U O = G 0(^f)+eG 1U,f)+e 2G 2(r \ f )+- • • , (36) « i « " 2 

where f = e2r. Inserting (36) into (3 5) and letting the coefficients . _ 2 ' -—cost, (41c) 
of like powers of e be zero gives dr^d^ co 

d2G0 2
 a n d 

1 ? - + «)BGo = 0, (37«) 9G„(0,0) 3G„_2(0,0) /3m6„,0 
a»0l 2 G«(O,0) = « , A , 0 , ^ — + — ^ — - = - - — , 
—2~ + comG] = - c7iG0sinco^ - b0cosut, (376) 

a 2 G # 1 = - 1 , 0 , 1 . (4W) 
-—2? + co2,G2= - tf2G0sin2cor Solving (41a-e0 for the first two terms gives 
or 

d2G b G^l(tl,t2) = A^i(t2)costi+B.i(t2)smt1, (42a) 
-a iG^incof-2 ——-- — sin2co?, (37c) a. 

dtdt 2 G0(tut2)=A0(t2)costl+B0(t2)smtl-~2B_l(t2) 
2co with 

dG„(0,0) aGn_2(0,0) + A [,4_1(f2)sin2f,-.B_I(f2)cos2f1]. (426) 
T" + 7~ — — PmOn.a, OCO G„(0) = amS„,0, and — + -= = - ftA.o. 6co' 

« = 0, 1, 2. (37c?) 

This set of equations yields the solutions a = -7^2 — ̂ \ , 7 = - ^ - j + -^» 
_ _ 24co 8co 24c- ° •• 

G0(t,t) =A0{t)coswmt + BQ(t)smwmt. (38) 
If com 5* 2co, we have s i n c e a> i s P o s i t i v e a n d «2 is negative, a is positive. The sign 

Letting 

5a2 3«2 a\ a2 

24co4~8co2'y~24a>4 + 8t7 

A0(t) = amcosQt sinGf, 
com 

of 7 depends on km and h0. If 7 < 0, 

A-i(t2)= - r - § - (1 - c o s V - a y t 2 ) , 
2co 7 

B0(t) = - — cosef-amsinGf. (39a) £ - iC 2 ) = - , ^ s inV-07/2. 

com 2co v — cry 

If com = 2co, A0(t) and B0(t) are given by / 

'c 2/?m\ . _ A0{t2) = amcos\/-ayt2—- j ~-siay/-ayt2, A0(t)=amcoset+ ——— sinG?, 
\ 0 co 

(c 2j3m\ ~ . . c , „„„ ^ o ( ^ 2 ) = — - c o s V - a 7 ? 2 + am --siay/- ayt2. 
- — — c o s 9 / - a m s i n e ? - - . (396) 01 m^l a ' 5 0 ( 0 = ( - — — ) c o s e / - a m s i n e f - -

In Eqs. (39a,6) 

(43a) 

aba , 6n 
n a\ I «i 2 \ . °o / «i . 2 \ si-H'2>=-r^t2,B„i(t2)=-—^2i2 
Q=A \~2—r^"-wm)> a n d c = ~o TT~2-4CO • 4co 2co 4com \co2 —4coi m}' 8co \15co' 

If 7 = 0, 

A-i(h)=^%, B^(t2)= --^-2t2, 

A0(t2)=^t2 + am,B0(t2)=-^. (436) 
CO CO Equations (39a,6) show that the response of the free surface 

to a periodic excitation is harmonic with amplitude modula- If -y > 0 
tion. If co ^ com/2, 2com, the drainage-initiated oscillations are 
proportional to F and are always stable on the t scale. The ^ _ u\= ^° \\ -cosh(\fcnt )1 
stability is marginal, i.e., the amplitudes are bounded. When 2co\ 
co„, = 2co, the drainage-initiated oscillations are comparable to ^ 
the initial disturbance-induced motion. B„ i (t2) = 2 °— sinh(V«7?2), 

The drain rate function q(t) used here is equivalent for small 2co Vay 
times to the case / = 0 in the previous section. The drainage- r~ 
™^d™flatio™0(F). It can be shown without difficulty Ao(t2)=amcosh^t2)+^ p s inh(V^? 2) , 
that if q(t) = smcot (equivalent to / = 1 for small time), the co \ 7 
drainage-initiated oscillation is proportional to 0{F2). These r-
results are consistent with that of the previous section. fim >— \y . ,— 

Applying the multiple scales method to the resonant free- B°^> = ~ ~ cosh(yJayt2)-aml- smh(yjayt2). (43c) 
surface motion corresponding to co = com, we let t{ = cot, , . 
t2 = e\, and seek the solution of (35) in the form F r 0 1 " t h l s

u
w < ; s e e t h a t t h e strongest resonant oscillation oc

curs when the forcing frequency co coincides with one of the 
„ (t-\--n ft t\j.n tt t\^.cn it t\j- tAcw natural frequencies. In this case, the drainage-initiated motion 
ym(t)-e G^(tl,t2) + G0{tl,t2) + eGl(tl,t2)+ . (40) .& ^ ^ ^ ^ ^ . ^ . ^ d i s t u r b a n c ^ d u c e d m o t i o n , 
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When 7 is positive, the amplitude of the mth mode of the 
resonant oscillation grows exponentially and the induced free-
surface motion is unstable. The necessary and sufficient con
dition for a positive 7 is 

1 

km-2o> > 0 , or /!0</imc = tanh" 
2)/k-

(44) 

where tanh"1 is the arc-hyperbolic tangent function, and hmc 

is the critical depth for the stability of the mth resonant mode. 
The largest possible hmc for an exponentially growing resonant 
motion is hlc = tanh"'(0.5)/^! = 0.143. If h0 > hlc, the 
resonance is stable. If h0 = hmc, secular instability occurs. The 
exponentially decaying resonant motion occurs if ho > hmc. 
Thus, a large initial depth h0 induces exponentially decaying 
resonant oscillations. 

If the forcing frequency co is fixed, different h0 will give 
different orders of resonant modes. Higher-order resonance 
is more unstable. Suppose hn and hm with n > m are two initial 
depths which correspond to nth and /nth resonant modes. 
According to (33a) they are 

E-" 

0 . 8 -

0 . 6 

0 . 4 

0 . 2 

0 

1 
tanh , and hm = — tanh 

km 
(45) 

- 0 . 2 -

- 0 . 4 -

- 0 . 6 

- 0 . 8 

- 1 
0.0 0.1 0.2 0.3 

h 

—r~ 
0.4 0.5 

If the nth resonant mode is stable, i.e., hm > hhc = tanh(0.5)/ , , 
k„, we can immediately see that co2 > kn/2. Since n > m which ?*1JI££ a S a f "" C " o n

1
0 , . h ° m

T h _ e f f ! !? ' ^ 8
a
 d e n o , e ,h,f 

leads to k„ > k, 
obtain 

hm = -

with the help of (45) and co /km > 0.5 we 

tanh" > — tanh" '(0.5) = h„ 

unstable modes. -
4. 

d2Gi a\ d2G0 

Hence, the mth resonant mode is exponentially decaying and 
thus is stable. This result is not obvious because hnc < hmc if 
n > m. 

The situation is reversed if we consider the case in which n0 

is fixed and co is varying. Since higher-order resonant modes 
have smaller critical initial depths, higher-order resonant modes 
are more stable for constant h0. Therefore, a large forcing 
frequency co will induce stable resonance. 

The nondimensional time scale over which the amplitude of 
the resonant oscillation has appreciable variation is 

,fi. +Gi=-4 — G 0 s i n 2 / , - 2 — — -
att co dt\dt2 

with the initial conditions 

r mm * 30 , (0 ,0 ) x 3O- i (0 ,0 ) Gm(0,0) = ctm5nfi, + -
dt. dU 

-4 —5 cos2/i, 
co 

2/3m5n,o 
co 

n = 0, 1. 

(47b) 

Tx = 
1 24w-l. .5 

(46) 

(47c) 

The leading terms of the initial condition-induced oscillations 
are given by 

G0(ti,t2)=amexp(^ t2)costi 

-^expf-^/iW,. (48«) 
CO \ CO / 

W a l 7 l £ (A^,-co4)-\/ ( 5 ^ + 4co4) Ik\n-4co41F2 T n e leading drainage-initiated resonant oscillations are 

4b0 

If «0 and u a r e fixed, which may induce both stable and unstable 
oscillations, a decreasing F results in an increasing Ts. Since 
the amplitude of the resonant oscillation is inversely propor
tional to F, the resulting oscillation is stronger, but takes a 
longer time to be seen. Figure 1 shows F2Ts/24ir2 versus the 
initial depth h0 according to (46) and (33a) for the first four 
modes. In the figure the km(m = 1, 2, 3,4) are the parameters. 
The negative values represent the unstable situation where h0 

< hmc. Ts has two poles located at n0 = hmc and n0 = °°, and 
a zero at h0 = 0. For a deep tank, n0 is greater than the critical 
value hmc so resonant oscillations are stable. Since n0 is large, 
co2 is close to km, hence Ts is large. As a consequence, resonance 
takes a long time to be visible. As n0 decreases towards hmc, 
Ts has a minimum value at which the stable resonance has the 
fastest rate of amplitude modulation. When h0 < hmc, the 
resulting unstable motion is unbounded. Since Ts decreases 
monotonically with decreasing ho, small initial depth gives fast 
growth rate. 

For the case when co = 2com, we define t\ = wt/2 and t2 = 
eti. The solution of (35) is again given by (40) with now G_ i(ti,t2) 
= 0. Since in this case t2 is proportional to 6, rather than e2, 
the perturbation equations governing G„(ti,t2) are 

Gi(tut2) = -—2 exp( - j t2 )cos?i + 
« i 4b0 

"3co2 cos2?i (486) 

Solutions (48a, b) imply the unconditional instability of the 
resonant responses to co = 2coOT. The rate of growth is given 
by 

"ih Fkm 
tl=~r:=~A—• u „ , • ,• (49) 

co t 47rsinh(2Armn0) 
fi is a decreasing function of the initial depth n0 as well as of 
km. Hence, the resonant free-surface oscillations grow faster 
for a smaller n0, a lower mode or a larger F. 

It is interesting that the stability behavior is totally reversed 
if q{t) = sinwt. In this case, 

F 
h(t)=hQ + e{\-coscoO, where e = —. (50) 

7TC0 

Equations (33a,b) are now 
00 

kmtanh(kmh(t)) =w2
m+J] e"a„(l -cosco?)", 

o)m = \/kmtimh(kmh0), (51a) 

iro)kmRn 

f + G0 = 0, (47a) 
cosh(£„,n) n = 0 

in which a„, b„ are defined by (34). 

= S e"b„(i-cosut)", (516) 
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Using the same methods with a„sin"wt in (33a,b) being re
placed by a„(l - coswt)" and ftnSin'W by b„(1 - coscoO", we 
obtain the following results: 

If co = 2co,„, defining t{ = o>mt and t2 = e?i and assuming 
the solution of (I6a,b) to be (40) with G-i(tut2) = 0, we obtain 

Go(t\,t2) = amcos• 
VI«i , 2V3/3m . V3i <?i 

V3 
2ft, 

CO 

V3ar, 
2 '2 "• ™ 2~" '2 

CO CO CO 

COS/, 

sin?!. (52a) 

For the drainage-initiated oscillations, G0(fi,/2) = 0. The lead
ing terms are 

GdU,h) = 
8ft0 . V M 

V3co: s in • t2COSti 

Sbo V3ai . 4ft0 - ^~2 c o s —T~ hsmti + —-5 sin2fi. (52ft) 
3co co 3co 

If co = com, the proper variables are t\ = ait and t2 = et\. The 
solution is still of the form given by (40). The first two terms 
are 

« i 
G0(t[,t2)=amcos[ti+^2 t2 

+ p - k W ( / i + A < 2 ) 3 . i n / I . (53a) 
\a\ co / \ 2co / «! 

G,(^2 ) = 
«f 

8fl2ft0 M / a, 
3" c o s 1 / , - ^ f e 

(2b\ b0\ . I a, 
+ | — + T)sin(/1+^?2 

2co" 

8a2ft0 ^o\ /2ft i ft0\ 

If co,„ = 2co, setting tx = u>t and t2 = e/1( and taking the 
solution the form of (40) with G-i(tut2) = 0, we have 

G0(h,t2) = <*mcos (2ti + YJ t2 \ 

- ^ s i n ^ 1 + ^ / 2 j . (54«) 

The leading drainage-initiated oscillations are given by 

+ - i - sm2r l — 
2«! 3coz sin?. (54b) 

It is seen that the free-surfade oscillations corresponding to 
a sinusoidal drain rate are one order weaker than that corre
sponding to the cosine drain rate, due to the more gradual 
turning on of the sink. The free-surface oscillations, whether 
they are resonant or not, are unconditionally stable. Com
paring the cosine drain rate with the sine drain rate, we con

clude that if the flow starts from rest in a gradual manner, the 
possible resonance is unconditionally stable. 

4 Concluding Remarks 
Free-surface oscillations that may be initiated either by the 

combination of the initial disturbances and the drainage or 
solely by the drainage have been investigated through a model 
which contains the linearized inertial term. The amplitude 
functions are then found in an asymptotic expansion based on 
small Froude number. 

For small Froude numbers, the present results show that 
draining or filling generates oscillations on the free surface. 
The present results support Miles' conclusion (1962) that drain
ing (filling) damps (amplifies) the oscillations regardless of the 
cause of initiation, but is in disagreement with that of Saad 
and Oliver's (1964). 

Our solution shows a strong influence of the initial behavior 
of the drain rate function on the visibility of drainage-initiated 
free-surface oscillations. If q(t) ~ t1 where / > 1 for small t, 
the drainage-initiated oscillations are very weak, and may be 
almost invisible, since the drainage-initiated oscillatory motion 
decays while the forced motion (nonoscillatory) grows and both 
balance each other initially. When the drain rate function has 
an initial discontinuity, such as an impulsive start of the flow, 
the drainage-initiated oscillations are one order (in F) stronger 
than the forced one, hence the free-surface motion is oscil
latory. In a filling tank the asymptotic motion is identical to 
that in a circular tank with constant depth ha. 

It is suggested that a small h0 induces strong drainage-ini
tiated oscillations may be the reason why a small h0 results in 
a strong jet (Zhou and Graebel, 1990). 

We also studied the resonant behavior of the free surface 
motion excited by periodic drainage. It was found that if the 
initial drain rate is zero, i.e., q(t) = sinco?, all of the oscillatory 
modes, resonant and nonresonant alike, are bounded, and thus 
are stable. When the drain rate has an initial discontinuity, 
i.e., q(t) = cosco?, the nonresonant and the higher-order res
onant modes are stable. The primary resonant mode (co = co,„) 
is conditionally stable. The secondary resonant mode (co = 
2com) is unconditionally unstable. 
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Nonaxisymmetric Waves of a 
Stratified Vertical Vortex 
The interfacial conditions for a cylindrical and an axial vortex sheet or thin fluid 
layer are obtained for a general class of vortex flows in a radius and gravity-stratified 
environment. The flow is assumed to be inviscid and incompressible. No Boussinesq 
approximation is required. In addition to the kinematic and dynamic conditions 
that the flow has to satisfy in the centrifugal and gravitational directions, a third 
condition, which restrains the interaction of the centrifugal and gravitational force 
fields, has to be imposed on those vortex sheets. This is consistent with the previous 
derived criteria for this type of vortex motions, in which a third condition based 
on pressure and force balance must be satisfied. Nonaxisymmetric instability for a 
special flow prof He is examined and the stability boundary is obtained to show the 
behavior of this type of stratified vertical vortex. The results provide us with some 
information on the instability mechanism for the generation of the horizontal vortices 
in the ocean and for the spiral type of vortex breakdown in tornadoes and waterspouts 
in the atmosphere. 

1 Introduction 
Coherent vortex motions widely exist in the atmosphere and 

in the ocean. Vortex trails generated in the lee of certain islands 
(Pao and Kao, 1976) and horizontal vortices evolving in the 
late wakes of a towed axisymmetric body (Pao and Kao, 1977; 
Lin and Pao, 1979) are a few of the examples we encounter. 
The latter is particularly interesting because they exist only in 
a stratified fluid but not in a homogeneous environment. 

Vortex motions in the atmosphere and in the ocean are 
subject to strong influence of density inhomogeneity due to 
the temperature or salinity fluctuations. Even though it is very 
small as in the ocean and in the atmosphere, such density 
inhomogeneity, once interacting with the gravity, plays a very 
subtle role in generating the organized flow structures. 

Many researchers have investigate the role that density in-
homogeneities play in flow behaviors, especially under the 
influence of gravity and other force fields. Stability analyses 
have been performed for two-dimensional shear flows in a 
gravity-stratified environment (Miles, 1961; Howard, 1961) 
and for swirling flows in a radius-stratified environment (Fung 
Kurzweg, 1975). In those analyses, only one force field, grav
itational or centrifugal, is present within the flow field, and 
the stability criteria so derived only respond to that particular 
force field in its respective direction. 
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For vortex motions in the atmosphere and in the ocean, both 
the gravity and the self-induced centrifugal force field are 
present. Our freedom of analysis is limited not only by the 
presence of the two force fields, but also by the requirement 
of pressure balance between the interaction of the two. Also, 
because of this pressure balance requirement, the radius-de
pendent density component may appear in an originally grav
ity-stratified fluid, and further complicates the analysis. 

To understand the behavior of vertical vortices in a stratified 
fluid is of great importance as it may lead to the physical 
mechanism which triggers the development of the coherent 
structures in stratified fluids. For that reason, Fung (1985, 
1986) analysed a general class of vortex flows in a both radius 
and gravity-stratified environment. Necessary and sufficient 
conditions were obtained for the stability or instability of the 
flows. To maintain the stability of certain types of vortex 
motions, the flow has to satisfy the requirements in the cen
trifugal direction, the gravitational direction, and the pressure 
balance that restrains the interaction of the two force fields. 

Even thought stability criteria have been derived for this 
general class of vortex flows to provide us with some upper-
bound information on stability or instability, they do not yield 
sufficient knowledge of instability for a given flow profile. 
Solutions to the governing equations must be obtained before 
the detailed instability characteristics for the particular flow 
profile can be observed. Unfortunately, analytical solutions in 
terms of well-known functions for general vortex flows are 
very difficult to find except for a few broken-line profiles. 
Analyses of vortex sheet-type flows have therefore become a 
tool to look at the behavior of this type of stratified vortex 
motions. 

Following the analysis of vortex motions for a general class 
of radius-dependent vortex sheets (Fung, 1983), we will analyse 
the interfacial conditions for both the cylindrical and axial 
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vortex sheet (or thin fluid layer) in a radius and gravity-strat
ified environment. Nonaxisymmetric instability will be ex
amined for a special gravity-stratified profile. The stability 
boundary will be obtained to determine the flow condition in 
a nonaxisymmetric configuration. This type of nonaxisym
metric instability may be responsible for the generation mech
anism of the horizontal vortices in the ocean, and for the spiral 
type of vortex breakdown of a straight vortex column in tor
nadoes and waterspouts in the atmosphere (Lugt, 1989). 

2 Governing Equations 
The stratified column vortex to be considered is confined 

within a cylindrical coordinates (r,d,z) with the z-axis pointing 
at the opposite direction of gravity. The fluid with density p 
is assumed to be inviscid, incompressible, and nonheat con
ducting. No Boussinesq approximation is made. The equations 
of motion for the velocities un ue, and uz in the respective r, 
6, and z-directions are 

dUr 
P — + « , — + — — 

dt dr r dd 
- — + u, 

r 

du. dUg Ue due UrUg 
+ Ur ~~ 1 I T H f" U, 

dt dr r dd r 

dz 

du, 

dz 

= --r (!) 

— + « « T 2 = - " P) 

dP 

dr 

ldP 

r dd 

duz duz ue du, 

dt dr r dd z 

dP 

' dz' 

The continuity equation is 

dur ur 1 dus du, „ 

dr r r dd dz 

and the incompressible condition is 

dp dp ug dp dp 

dt dr r dd z dz 

(3) 

(4) 

Let the vortex have a steady-state angular velocity Q(r,z) and 
be embedded in a fluid with density p0(r,z). The corresponding 
governing equations of motions for the steady-state are 

dP° o2 

dPo 
dd 

'- = 0 

dPo 
dz -p0g, 

(6) 

(7) 

(8) 

Let the flow be perturbed as follows: 

ur = u 

ue = rQ(r,z) + v 

uz = w 

P = P0(r,z) + P 

p = p0 (r,z) + p (9) 

where the quantities with a hat stand for small perturbations 
from their steady-state profiles. Equations. (1) to (5) admit 
the following normal modes solutions for the perturbation 
quantities 

4>(r,d,z) = 4>(r,z) exp [i(md - ut)]. (10) 

Here, m is the azimuthal wave number, an integer, and w 
= o>r + o),is the complex eigenfrequency. We further introduce 
the Lagrangian displacements such that 

y(r,z) = - i 
/wfl-< 

&r,z)= -i 
mQ-oi 

(11«) 

(116) 

Within the framework of the normal mode analysis, we obtain 
the following set of linearized equations governing the stability 
of the flow: 

Po{ (N2 - $ , ) , -
„ _, dp 2mQ 

p0{*rv+(N2+yzm=^. 

dr\ 

' Jr" 
Here, N = mil 

+ 1 -
2mQ 5 + ^ = - 1 m 

N I r dz PoN2 r2 p' 

co, the Doppler-shifted frequency, and 

Zr = -^%-lPo(r2Q)2], 
par dr 

<!•; = - fov f l 2 ) , 
Po dZ 

(12) 

(13) 

(14) 

*,= g dPo 
p0 dr' 

% = - — • 

Po dz 

The boundary conditions for eqs. (12) to (14) are 
v = 0 at r = RuR2 (15a) 

f = 0 at z = Zi,Z2 (15b) 

where Ri,R2,Zu and Z2 are locations of rigid boundaries. For 
unbounded flows as in the atmosphere and ocean, the bound
aries will be extended to infinity to represent that perturbations 
of the flow can not propagate to infinity. 

(5) 3 Interfacial Conditions 
The interfacial conditions for a cylindrical vortex sheet or 

a cylindrical fluid layer have been investigated in detail for a 
general class of radius-dependent stratified vortices (Fung, 
1983). The presence of gravity in a stratified environment, 
however, creates much more complicated issues as in most of 
the situations we encounter. As demonstrated in the studies 
for compressible and incompressible vortex motions under 
gravity (Fung 1985, 1986), the interaction of the centrifugal 
and gravitational force fields plays an important role in flow 
stability. In addition to the conditions that the flow has to 
satisfy in the centrifugal and gravitational directions, a third 
condition based on the interaction of force fields and on the 
resultant pressure constraint is imposed on the flow to influence 
the development of organized flow structures in a gravity-
stratified environment. For this reason, the validity of those 
interfacial conditions originally derived only for radius-strat
ified vortex motions is at best uncertain. 

To resolve this uncertainty, we will examine the interfacial 
conditions for this general class of vortex motions in a both 
centrifugally and gravitationally stratified environment. We 
assume a cylindrical and an axial vortex sheet (or thin fluid 
layer) to exist within the flow field. Both vortex sheets or fluid 
layers may possess possible discontinuities in all components 
of the density and velocity fields. 

The cylindrical vortex sheet or fluid layer to be considered 
has its steady-state location at r = R. Integrating eqs. (12) to 
(14) across the cylindrical interface in the radial direction and 
assuming that all the quantities across the interface are 
bounded, we obtain the following conditions: 

<P>*+<P</n2>RT,(i?) = 0 

(16a) 

(166) 

<Po>* = 0 (16c) 

where (<J>}R = 4>(R+o) - <l>(R-o) represents a possible jump 
condition at r = R. The physical arguments for eqs. (16a) and 

446/Vol. 59, JUNE 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



r = R 

Pi{R + fi) 

MR) 

•*—/P„2 Rnl, n(R) 

(a) (b) 

Fig. 1 Decomposition of the total pressure into the force components 
at the cylindrical interface 

(166) can be viewed from the steady equation of motion in the 
radial direction. By integrating eq. (6) in the radial direction, 
we obtain the steady-state pressure for the inner and outer 
regions as follows: 

P<n(r,z)=-\ poxir',z)r'Q\r',z)dr' (R0<r<R) (17a) 

Poi(r,z) = - PoiO" ,z)r 'OV ,z)dr' 

- \ p02(r',z)r'Q\r',z)dr' (#<r<oo) (176) 

where the subscripts 1 and 2 respectively represent the quan
tities in the inner the outer regions divided by the vortex sheet, 
and R0 is an arbitrary reference location within the inner re
gion: Assume the cylindrical vortex sheet is disturbed such that 
the deformed surface is prescribed by 

r = R + y(r,6,z;t). (18) 

Take the total derivative of (18) and assume a solution with 
a form described in (10). The kinematic interfacial condition 
in eqs. (16a) immediately follows the argument that the dis
placement should be continuous across the cylindrical inter
face. The dynamic condition can also be revealed by examining 
the pressure condition at the interface. Such a condition re
quires that the total pressure be continuous across the deformed 
interface, i.e., 

Pl(R + v) = P2(R + v)- (19) 
Subtracting eqs. (17a) and (176) from (19) and assuming that 
all the quantities in the mean flow are bounded and continuous 
within the interval [R,R +»;], we obtain, within the framework 
of normal mode analysis, the linearized perturbation condition 
for the dynamic interfacial balance condition in the radial 
direction as given in eq. (166). 

The procedure to obtain eq. (166) from eq. (19) represents 
a dissolution of the total pressure force acting at the perturbed 
cylindrical surface of the vortex sheet (Fig. 1(a)) into the pres
sure and centrifugal force components acting at the steady-
state interface (Fig. 1(6)). This procedure of force decompo
sition clearly demonstrates that the deformation of a cylindrical 
vortex sheet perturbs both the pressure field and the centrifugal 

force field created by the rotation of fluids. Equation (16a) 
and (166) are similar to those for radius-dependent rotating 
flows (Fung, 1983) except the quantities now depend on both 
the radial and axial coordinates. 

It is also interesting to point out that even though the quan-
ities in conditions (16) are values across the cylindrical vortex 
sheet, the condition in (16a) and (166) are quantities interacting 
with perturbations while the condition in (16c) is a result of 
the pressure balance condition and is independent of the per
turbation condition. 

For an axial vortex sheet with its steady-state located at z 
= Z, similar conditions can be obtained by integrating eqs. 
(12) to (14) across the axial vortex sheet in the axial direction. 
Assuming that all the quantities across the axial interface are 
bounded and continuous, we obtain 

<f>, = 0 

<pon
2>, = 0 

(20a) 
(206) 
(20c) 

where (\p)z = \p(Z+0)-ip(Z-0) represents a possible jump con
dition at z = Z. Equations (20a) and (206) are, respectively, 
the kinematic and dynamic interfacial conditions for the axial 
vortex sheet with their physical meaning to be given as follows. 

Assume that the axial vortex sheet originally located at the 
axial location Z is perturbed such that the perturbation surface 
is described by 

z = Z+f(r,e,z;t). (21) 
Taking the derivate of eq. (21) with the solution prescribed in 
eq. (10), one obtains eq. (20a) with the argument that no gap 
is allowed to exist at the perturbed vortex sheet. 

The dynamic interfacial condition in Eq. (206) can be ob
tained by examining the equation of motion in the ̂ -direction. 
The steady-state total pressure below and above the vortex 
sheet are, respectively, 

Poi(r,z) - r p03(r,z')gdz' (Z0<z<Z) (22a) 

Po4(r,z) = -I Z p* 

Po4(r,z')gdz' - J pM(r,z')gdz' (Z<z<oo) 

(226) 
where the subscripts 3 and 4 represent the quantities in the 
lower and upper regions divided by the axial vortex sheet, and 
Z0 is an arbitrary reference location anywhere within the lower 
region. If the vortex sheet is perturbed according to eq. (21), 
the total pressure should be balanced at the perturbed interface 
such that 

i>3(Z+f) = P4(Z+r). (23) 
Assuming all the mean flow quantities are bounded and con
tinuous within the interval [R,R + f], we obtain, by subtracting 
eqs. (22) from eq.(23), the perturbation condition for the dy
namic pressure balance at the perturbed interface as the one 
given in eq. (206). The procedure to obtain eq.(206) from 
eq.(23) represents another dissolution of the total pressure 
force acting at the perturbed surface of the vortex sheet (Fig. 
2(a)) into the individual force components acting at the steady-
state interface (Fig. 2(6)). As also shown earlier in the case for 
the cylindrical vortex sheet, this procedure of force decom
position clearly demonstrates that the perturbation of an axial 
vortex sheet perturbs not only the pressure field, but also the 
gravitational force field that interacts with density variations 
should gravity-stratified fluids be considered. Also similar to 
the conditions in eqs. (16), both eqs. (20a) and (206) depend 
on perturbation quantities, while eq. (20c) does not. 

In addition to the kinematic and dynamical conditions that 
the flow with a cylindrical or an axial vortex sheet has to satisfy, 
two more conditions as described by eqs. (16c) and (20c) are 
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Fig. 2 Decomposition of the total pressure into the force components 
at the axial interface 

imposed for vortex motions in a stratified environment. These 
two conditions are the result of the pressure constraint that 
dominates the variation of the velocity and density in the flow 
field. The way such pressure constraint affects the flow char
acteristics have been examined in the stability analysis of com
pressible and incompressible vortex motions in stratified fluids 
(Fung, 1985, 1986). In addition to the stability criteria, the 
flow has to satisfy in the radial and axial directions and a third 
criterion has to be imposed as a result of the pressure balance 
contraint. Contrast to the kinematic and dynamic conditions 
(16a), (166), (20a), and (206) that interact with the perturbation 
displacement and perturbation pressure, neither condition (16c) 
nor condition (20c) involves any perturbation quantity in the 
flow field. 

It should be pointed out that eqs. (16) and (20) are kinematic, 
dynamic, and pressure balance conditions, and are valid for 
both compressible and incompressible flows. 

fi2/fii 

Fig. 3 Stability boundary of the stratified vertical vortex 

+ * i 

fi = 

2/wQi kqirYm(kqir) 

k 

Ym(kqir)\e ,-kz 

Ym(kq,r) 

lAlJm(kqlr) + BlYm(kq1r)]e-kz, 

(26a) 

(26b) 

(26c) Px = \AxJm(kqxr) + BxYm(kq,r)\e-kz 

The solutions for the flow profile described in eq. (25) in the 
lower region are 

1 
V2 = 

Pi(N
2
2- •4Gf) 

2mti2 kq2rJm(kq2r) 

N2 Jm(kq2r) 
Jm(kq2r) 

+ B2 
2mQ2 kq2rYm(kq2r) 

N2 Ym(kq2r 
Ja Ym(kq2r)\ eK\ (21a) 

4 An Analytical Solution 
While the stability or instability criteria provide us with some 

upper-bound information on the flow, they don't yield suf
ficient information on flow instability, if any, for a particular 
flow profile until solutions are obtained. Numerical solutions 
are possible, but sometimes they have difficulty revealing the 
underlining mechanism. Unfortunately, analytical solutions in 
terms of well-known functions are difficult to obtain, especially 
for the flow under consideration. Solutions, if they exist, will 
have to satisfy the equations in the radial and gravitational 
directions, and the pressure balance condition that restrains 
the interaction of the flow quantities in both directions. 

To have an insight to the stability mechanism of stratified 
vortex motions, we select one of the few flow profiles in which 
analytical solutions exist. Consider a uniformly rotating col
umn vortex to be superimposed on another one with different 
density and velocity, such that 

Q(r,z) = QiPo(r,z) = Pi for 0<z<°° (24) 

Q(r,z) = Q2p0(r,z) = p2 for - o o < z < 0 . (25) 

The statically stable density distribution requires that p\^p2. 
The solutions of Eqs. (12) to (14) for the flow profile described 
in Eq. (24) in the upper region are as follows: 

1 
Vi = 

Pl(N
2
l-4Q2) 

2/wQ, kqxrJm(kqxr) 

M Jm(kq\f) 
Jm(kq\r) 

h = ~TS [A2Jm(kq2r) + B2Ym(kq2r)] ek\ 
P2N2 

(21b) 

(21c) Pi = \A2Jm(kq2r) + B2 Ym(kq2r)\ J*. 

Here, Jm and Ym are, respectively, the Bessel functions of the 
first and second kinds of order m. The axial wave number k 
is assumed to be positive. The subscript 1 and 2 denotes the 
quantities in the corresponding upper and lower regions. The 
doppler shifted frequencies are Nj = mQj — ut and qs = 

V l-4fl//iVJ where the subscript j = 1,2. The constants 
Ai,Bi,A2, and B2 are to be determined by the interfacial and 
boundary conditions. The boundary conditions which require 
the solutions in both regions to be bounded at infinity have 
been imposed in eqs. (26) and (27). Utilizing the interfacial 
conditions (20) at z = 0 for both upper and lower regions, 
and requiring that the solutions in both regions to be bounded 
at the axis, one obtains, after some mathematical maneuvering, 
the following secular relation that governs the flow stability. 

(pi + p2)</ - 2m(piQi + p2Q.2)w + kg(pi - p2) 

+ m2(piQ2 + p2Q2) = 0 (28) 

The vortex will be stable if 

kg(j>l - P\) - m2
PiPl(Q2 - Q{)

2 2= 0. (29) 

The first term in eq. (29) is simply the gravity stratification 
effect on stability. It is obvious that the flow will always be 

448/Vol. 59, JUNE 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.247. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



unstable for all rotating configurations if p2<Pi> a statically 
unstable density distribution under gravity. For a statically 
stable density distribution p2£pi as in the present case being 
considered, positive density difference, reinforced by the axial 
wave number k, stabilizes the flow as one would normally 
expect. The angular velocity difference in the second term of 
eq. (29), however, interacts with the azimuthal wave number 
and generates rotating shear effects which always destabilize 
the flow. The flow is especically susceptible to shear instability 
for large azimuthal wave numbers as one would exect. 

While eq. (29) shows that the stability condition is dominated 
by both the gravitational effect of the density gradient and by 
the shear effect of the angular velocity gradient, a constraint 
condition prescribed in eq. (20c) also plays a role in the final 
stability. Apply condition (20c) into Eq. (29). The stability 
condition for the vortex is now 

^J^rN)- (30) 

The stability boundaries are plotted in Fig. 3 to show how the 
ratio of the velocities and the wave numbers affect the stability 
of the flow. While large azimuthal wave numbers reinforcing 
angular shear tend to destabilize the flow, large axial wave 
numbers, reinforcing the gravity, stabilizes vortices with an 
originally stable density distribution. The final stability con
dition will be determined by the resultant direction of pertur
bations. 

5 Discussion 
The interfacial conditions for a cylindrical and an axial vor

tex sheet are derived for a general class of vortex motions in 
a radius and gravity-stratified environment. These conditions 
are valid for both compressible and incompressible flows. No 
Boussinesq approximation is required. All the flow quantities 
are allowed to vary in both the radial and axial directions. In 
addition to the earlier derived kinematic and dynamic condi
tions required in their respectively radial and axial directions, 
a third condition resulting from the pressure balance constraint 

must also be satisfied. Similar requirements were also shown 
in earlier analyses for the same type of vortex motions (Fung, 
1985, 1986). Based on the requirements shown in this paper, 
fluids with light density can be embedded in an environment 
with heavier density if the lighter ones have a large angular 
velocity. This phenomenon is observed in a numerical study 
on the horizontal vortex in stratified fluids (Fung and Chang, 
1991). 

The analytical solution obtained for a special kind of flow 
profile reveals some of the stability characteristics for the strat
ified vertical, vortex. While the centrifugal and gravitational 
forces have their independent influence on the motion of the 
vortex, they interact with the wave numbers in their corre
sponding directions. The azimuthal wave number reinforces 
the angular shear effect and the axial wave number reinforces 
the gravity stratification effect. The resultant flow condition 
will be determined by their final interaction. 
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A Note on the Use of High-Speed Infrared Detectors 
for the Measurement of Temperature Fields at the Vi
cinity of Dynamically Growing Cracks in 4340 Steel 

Alan T. Zehnder1,3 and Ares J. Rosakis2,3 

Introduction 
The dissipation of energy, due to plastic deformation, near 

the tip of a dynamically propagating crack may result in large 
temperature increases of the material near the crack tip. It is 
suspected that such temperature increases will strongly affect 
the nature of the near-tip deformation field and may result in 
changes of the dynamic fracture toughness of the material. To 
investigate these effects experimental measurements of the 
crack-tip temperature distribution were performed using a non-
contact system of eight high-speed infrared (IR) detectors fo
cused on eight discrete points perpendicular to the prospective 
crack path. 

Experimental Arrangement 
The experiments were performed on wedge loaded, double 

cantilever beam specimens of 4340 steel with heat treatment 
and material properties identical to those used by Zehnder and 
Rosakis (1983). The in-plane specimen dimensions were 15.14 
cm x 6.09 cm, the thickness was 1 cm, and the specimen 
contained an initially blunted notch which was 3.81 cm long. 
The specimen geometry is shown in Fig. 1. 

The temperature field near the tip of the dynamically prop
agating crack was recorded using a high-speed infrared detector 
system. This system is similar to the one used by Hartly, Duffy, 
and Hawley (1987), who studied heat generation during adi-
abatic shear band formation. This noncontact measurement 
uses an eight element, linear array of InSb IR detectors to 
record the time history of temperature increase at eight discrete 
points on the specimen surface. The points are aligned per
pendicularly to the prospective crack path. 

Graduate Aeronautical Laboratories, California Institute of Technology, 
Pasadena, CA 91125. 

Currently at the Department of Theoretical and Applied Mechanics, Cornell 
University, Ithaca, NY 14853-1503. 

3Assoc. Mem. ASME. 
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS . Manuscript received by the ASME Applied Me
chanics Division, Mar. 16, 1989; final revision, Jan. 22, 1990. 

Using the system of spherical mirrors, shown in Fig. 2, 
radiation from the eight points on the specimen is focussed 
onto the eight IR detector elements with a magnification of 
one. As shown in Fig. 2, the areas of measurements, both on 
the specimen and on the IR detector, are eight squares (0.16 
mm x 0.16 mm) and the spacing between them is 0.2 mm. 
The high spatial resolution of the system allows for the meas
urement of temperature well within the crack-tip plastic zone. 

The voltage output of each of the infrared detector elements 
was separately amplified and recorded on high-speed digital 
oscilloscopes. The recorded signals were then converted into 
temperature increase through an experimentally obtained cal
ibration. The rise time of the IR detectors and their amplifiers 
is 0.75jts, which is safely below the minimum experimentally 
observed rise time of 2.5fis. 

The crack-tip velocity history was simultaneously recorded 
in the back of the specimen by means of a grid of conductive 
paint placed perpendicular to the crack path. As the crack 
runs, the conductive strips are broken and the resistance of 
the whole grid is increased, providing the time history of the 
crack motion. 

Experimental Results 
Figure 3 shows the time record of the temperature measured 

by each of the eight detector elements as the crack tip ap
proaches and passes through the detection points. Time t = 0 
corresponds to the triggering of the oscilloscopes. For this 
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Fig. 1 Specimen geometry 
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Fig. 2 Schematic of the experimental set-up. The top shows the fo
cusing of radiation onto the Infrared detectors. The bottom shows the 
location of measurement areas relative to crack line. 
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particular experiment, the crack propagation speed was con
stant through most of the specimen and equal to approximately 
900 m/s. The maximum temperature increase of 450°C was 
recorded by element 4 (Ch4 in the figure). The minimum rise 
time of 2.5/is was also recorded by this element. In this ex
periment, the crack tip traversed the array of detection points 
slightly off center, but through the region focused on element 

a = 900 m/s 

-1.5 - 1 . 0 - 0 . 5 
— I 

0.0 

Xi mm 

0.5 1.0 1.5 

Fig. 4 Contours of equal temperature rise at the vicinity of the prop
agating crack. Temperature Increase is in °C. 

4. Thus, as may be expected by symmetry, the elements to the 
left and right of element 4 (channels 3 and 5) recorded tem
peratures very similar but not exactly equal to each other. These 
points also had markedly slower rise times than element 4. 

An alternative means of viewing these results is shown in 
Fig. 4. This figure shows contours of equal temperature in the 
vicinity of the propagating crack. These were obtained from 
the temperature versus time results of Fig. 3, by converting 
the time axis into distance parallel to the direction of crack 
growth, using the measured crack-tip speed of 900 m/s. Each 
detector element corresponds to a fixed distance from the crack 
on a line perpendicular to the direction of crack growth. In 
this figure, the estimated crack-tip position is X\ = - 0.5 mm. 

The isotherms of Fig. 4 clearly show that the region of intense 
heating (temperatures ranging from 450°C-150°C) extends ap
proximately 0.5 mm ahead of the crack tip while the half-width 
of the resulting wake of temperatures is approximately 0.25 
mm. It should be observed that the isotherms in the wake 
region behind the crack tip remain almost parallel to the crack 
line for at least 1.5 mm, suggesting that at least locally, the 
deformation remains essentially adiabatic. 

An estimate of the size of the region of intense heating 
relative to the plastic zone size can be obtained by an elementary 
calculation. The maximum extent of the plane-stress plastic 
zone radius, is rp « 0.25 (Ki/a0)

2, where Kj is the dynamic 
stress intensity factor and a0 is the yield stress in uniaxial 
tension. During crack growth, Kjis often assumed to be equal 
to the dynamic fracture toughness, KJC> of the material. For 
this particular heat treatment of 4340 steel, KjCcan be inferred 
from the experimental results of Zehnder and Rosakis (1989) 
who give its dependence on crack-tip speed. For a speed of 
900 m/s, KjC = 130 MPa Vm which corresponds to rp » 2 
mm for o0 = 1450 MPa. The results show that the region of 
intense heating is limited to distances roughly equal to rp/A 
from the crack tip. 

The results presented in this technical note are preliminary. 
We are now conducting an extensive set of experiments cov
ering a wide range of crack-tip velocities and materials in
cluding a variety of ductilities of 4340 steel as well as several 
titanium alloys. 
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A Note on the Interface Crack Problem 

H. Lu4 and T. J. Lardner4 5 

Introduction 
The use of a complex dislocation density to formulate the 

governing equations for interface crack problems has provided 
a convenient encompassing method to obtain stress intensity 
factors and energy release rates (see Rice (1968), Thouless et 
al. (1987), Hutchinson et al. (1987), Suo and Hutchinson 
(1989a, 1989b, 1990), He and Hutchinson (1989), Suo (1989), 
and Hutchinson and Suo (1991)). The governing equation for 
the dislocation density is a singular integral equation of the 
second kind, the solution to which can be obtained numerically, 
e.g., see Gerasoulis and Vichnevetsky (1984). Jacobi polyno
mials can be used since they appear as the fundamental solution 
to the integral equations (Erdogan (1969), Erdogan and Gupta 
(1971, 1972), and Erdogan et al. (1972)). However, these pol
ynomials are not convenient because the coefficients in the 
polynomials depend on the material constants; instead Che-
byshev polynomials are more suited for numerical work as 
demonstrated in the works cited previously. 

The purpose of this Brief Note is to consider the classical 
interface crack problem (England (1965) and Rice and Sih 
(1965))—a crack on a bimaterial interface—with a view to 
obtaining a number of interesting results for the stress intensity 
factor when the traction on the crack is expanded in a series 
of Chebyshev polynomials. We also obtain an interesting result 
for the stress intensity factor for a crack in a homogeneous 
material. The basic equations can be found in the references 
cited. 

Formulation 
The interface crack is modeled by a dislocation density func

tion along the crack and the equation for the dislocation density 
following the formulations in the references cited above takes 
the form 

PiA(u)+-
1 Av\dtJ(u) 

t-u 2z 
\u\<l 

A(t)dt = 0 

(1) 

(2) 

K={2icfn-s]\-$1 lim A(t)(l-t)l/2+k. (3) 
r - l -

In the usual approach to the numerical solution of (1) and 
(2), we assume that the approximate solution can be written 
in a finite series of N Chebyshev polynomials of the first kind 
in the form 

A(t)= (\±A —L=f]AkTk(t) = W(t) J]AkTkU). 
V V - y i _ ^ * = 0 k = 0 

(4) 

Upon substitution of (4) into (1) and use of the result 

r w(t)Tk{t)_ dt= _ _*_ 

J_, t-u cosh7re 

where Qk(t) is the principal part of Tk(t){t + l )~1 / 2 + ' e 

(t - i ) - ' / 2 - « at infinity, we find 

v^i . ^ , s cosrure _ , , 
YjAkQk(u)=^—p(u). 
k=0 lie 

(6) 

The functions Qk{u) are expressible as linear combinations 
of Chebyshev polynomials of the second kind Uk and are given 
in the appendix. 

Equation (2), upon integration and upon use of the expres
sions for Qk together with a recurrence relation for Uk, leads 
to 

A0 + - L 4 i (4 / e )+^ 2 ( - 8 e 2 ) + ^ 3 r ' € ( l - 8 e 2 ) + ' " =0. 

(7) 

The expression for K follows from (3) and (4): 

^ = T
3/221+'eVl^S^*- (8> 

(9) 

(10) 

We see that when e = 0, AQ - 0, and (6) becomes 

^ AWT t , PM 

2,AkUk„du)=^r- • 

Orthogonality of the Uk(u) then gives 

Ak = — \ p(u)\/l-u2Uk.i(u)du, k>\ 
TV J _ i 

for the coefficients in the solution (4). The expressions for Ak 

can also be written in the form 
Ak = ̂ -2 \ P

/l!fLlTk.i(u)-Tk+l(u)]du, k>\ (11) 

upon use of relations between Uk and Tk. 
If the load is expanded in a series of Tk, 

N-\ 

p(u) = J]akTk(u) (12) 

where A(t) is the dislocation density. Equation (1) is of the 
second kind arising from the concentrated load in the expres
sion for the traction induced by the dislocations on the interface 
(see, e.g., Dundurs and Markenscoff (1989) and Hui and La-
goudas (1990)). 

The stress intensity factor is related to the dislocation density 
in the form 
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where 

a0 = i f m^L.,ak=
2-( mzmt k^ (i3) 

then the coefficients Ak become 

Ai=— {2a0-a2} 
4-7T 

Ak = — [ak^i-ak+1], k = 2,...N. 
4ir 

It follows therefore that 

(14) 
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The use of a complex dislocation density to formulate the 

governing equations for interface crack problems has provided 
a convenient encompassing method to obtain stress intensity 
factors and energy release rates (see Rice (1968), Thouless et 
al. (1987), Hutchinson et al. (1987), Suo and Hutchinson 
(1989a, 1989b, 1990), He and Hutchinson (1989), Suo (1989), 
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the dislocation density is a singular integral equation of the 
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ynomials are not convenient because the coefficients in the 
polynomials depend on the material constants; instead Che-
byshev polynomials are more suited for numerical work as 
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The purpose of this Brief Note is to consider the classical 
interface crack problem (England (1965) and Rice and Sih 
(1965))—a crack on a bimaterial interface—with a view to 
obtaining a number of interesting results for the stress intensity 
factor when the traction on the crack is expanded in a series 
of Chebyshev polynomials. We also obtain an interesting result 
for the stress intensity factor for a crack in a homogeneous 
material. The basic equations can be found in the references 
cited. 
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The interface crack is modeled by a dislocation density func

tion along the crack and the equation for the dislocation density 
following the formulations in the references cited above takes 
the form 
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(2), we assume that the approximate solution can be written 
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second kind arising from the concentrated load in the expres
sion for the traction induced by the dislocations on the interface 
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The stress intensity factor is related to the dislocation density 
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K=2lrV2TiAK=7 l(2ao-«2) + ( « i - » i ) + "*+fl t f - i ) 

= \fw\a0 + - « i | . (15) 

Equation (15) shows that the stress intensity factor for a 
finite crack in an infinite homogeneous medium depends only 
on the first two coefficients of the expansion of the loading 
p(t) on the crack surface in Chebyshev polynomials—a result 
not immediately obvious. We will show how this result can be 
obtained from the exact solution of (1). 

Returning to (6) in the case when e ^ 0, we see that if p(u) 
is expanded as in (12), then the coefficients Ak can be found 
again from orthogonality of the Uk in the expression for Qk. 
The value of Ao is then obtained from (7). The stress intensity 
factor then follows from (8) in a series of power of e; we will 
show the explicit expression below. 

It turns out that in this special case we can solve (1) exactly 
(Muskhelishvili, 1953) to find 

A(t) = 
Pit) Pi 

2ir l-f 

J_ 
'lit2 

w(t) r _p_ 
1-/32 J_! W(i 

(r)dr 

T ) ( T - 0 
+ CW(t). (16) 

The constant C appearing in (16) is identically zero; this 
follows from the continuity condition (2) using direct integra
tion. 

It follows from (3) and (16) that the stress intensity factor 
is (in agreement with Rice and Sih (1965) and Suo (1989)), 

- coshire „:,(•' / l - A ' £ l + t _ , ,_, 

'=^-2Ly^ ( ( ) () 
The stress intensity factors for two classical interface prob

lems are obtained directly from (17); i.e., (1) when the crack 
is loaded by a uniform pressure p(t) = p0, 

~K=p<rJlti€(l-2ie) (18) 

and (2) when the crack is loaded by a concentrated load p(t) 
= p08(t - c), 

In the general case, the loading p(t) can be expanded in a 
series of Chebyshev polynomials of the first kind as in (12). 
When e = 0, Eq. (17) becomes 

V7T J 

l+t 

^ J-' y/7^? 
p(t)dt. (20) 

We note that l/\j 1 - i2 in (20) is the weight function of 
the Chebyshev polynomials of the first kind and T0(t) = 1, 
Ti(t) = t. It follows that if the arbitrary loading is in the 
form (12), Eq. (20) becomes 

i N r1 
T0(t) + T,(t) 

Tk(t)dt (21) 

and by the orthogonality property of the Chebyshev polyno
mials we find, as before, 

K=4* «o + 2«i (22) 

For the bimaterial case, e ^ 0, when we substitute (12) into 
(16) and carry out the integration, we find 

coslnre fi1i 

j 4 ( 0 = _ _ _ W{t) J ] akQk(t) (23) 
k=0 

where the Qk(t) is the principal part of Tk{t){t - i )1 / 2 + , e 

(/ + l)1 / 2- ' e at infinity. 
The stress intensity factor then becomes 

K=^rJ]akQk(l). (24) 
k = 0 

The expressions for the Qk(t) are given in the Appendix. 
We note that when e = 0, the Qk(t) reduce to simple linear 
combinations of the Chebyshev polynomials of the second kind 
Uk(t), and that Qk(l) = 0, k > 2. 

It follows from (24) and the expressions for Qk(l) that the 
expression for the stress intensity factor when e ^ 0 can be 
expressed as follows: 

K = V7r2;eJa0 + - « i -2 /e 

-2e2 

2 1 
a0 + al + -a2 + -a4 

fli + 2«2 + r «4 + • + ... (25) 

2TT 

where the additional terms can be easily obtained. 
We rewrite (25) in the form 

K=2ie[K0 + \fao(.e)). (26) 

We see that the correction to the homogeneous stress inten
sity factor is of order e, that the 2,e appears naturally as a 
multiplicative factor, and that the explicit expression to any 
order in e for the stress intensity factor can be written down 
once the coefficients ak are found. 
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Symmetrizable Systems in Mechanics and Contro l 
Theory 

W. R. Kliem6 

Stability investigations of nonconservative systems MX + 
BX + CX = 0 in mechanics and control theory become sub
stantially easier if the coefficient matrices B and C are either 
both real symmetric or both complex symmetric. It is therefore 
of interest to give conditions under which, by means of a 
similarity transformation, a system may be converted into one 
of these forms. We discuss the following questions: Are such 
systems robust with respect to perturbations in the entries of 
the coefficient matrices? Do relevant applications exist? 

Introduction 
Systems of linear differential equations of the form 

MX+BX+CX=0 (1) 

play an important role as mathematical models of mechanical 
systems. The vector X represents the generalized coordinates 
and the mass matrix M is assumed to be real symmetric and 
nonsingular. In the general nonconservative case, B and C are 
square matrices but otherwise arbitrary. 

In the control of mechanical systems by position feedback, 
the matrix C can be written as K + yH, where the stiffness 
matrix K is symmetric. H reflects the locations of sensors and 
actuators and is in general not symmetric, y denotes a single 
gain variable. 

Although, many papers deal with the stability of noncon
servative systems, there is still a lack of practical stability 
results. A number of existing theorems only give sufficient 
conditions (e.g., Frik, 1972; Kliem and Pommer, 1986; Ah-
madian and Inman, 1986) and often lead to poor stability 
limits. Another class of results like the classical algebraic and 
geometric criteria of Routh-Hurwitz and Lienard-Chipart are 
rather cumbersome. 

This difficulty exists only for the most general nonconser
vative case. Stability investigations become substantially easier 
if the system matrices B and C are either both real symmetric 
or both complex symmetric, i.e., ay = a^ rather than atj = a,-; 
(Hermitian). 

Especially the stability of the real symmetric case, which is 
the most important for applications, is well understood (see, 
e.g., Huseyin, 1978). A more general theory for both B and 
C being normal matrices includes this case (Pommer and Kleim, 
1987), but shall not be dealt with here, since applications are 
fairly rare. 

Consequently, it is of some interest to investigate whether, 
by means of a similarity transformation (which preserves the 
eigenvalues), a nonconservative system (1) can be brought into 
a form belonging to one of the two symmetric cases mentioned 
above. Then the system is called real symmetrizable or complex 
symmetrizable, respectively. In both cases it is a matter of a 

^ 7 = 777 ie (32e6 + 28e4 - 7e2 - 3) 
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In the control of mechanical systems by position feedback, 
the matrix C can be written as K + yH, where the stiffness 
matrix K is symmetric. H reflects the locations of sensors and 
actuators and is in general not symmetric, y denotes a single 
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Although, many papers deal with the stability of noncon
servative systems, there is still a lack of practical stability 
results. A number of existing theorems only give sufficient 
conditions (e.g., Frik, 1972; Kliem and Pommer, 1986; Ah-
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limits. Another class of results like the classical algebraic and 
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the most important for applications, is well understood (see, 
e.g., Huseyin, 1978). A more general theory for both B and 
C being normal matrices includes this case (Pommer and Kleim, 
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simultaneous transformation W~lBWand W~lCW. With only 
little loss of generality M is assumed to be a unit matrix / . 

We want to discuss the following questions: What are the 
conditions for system (1) to be symmetrizable? How robust is 
this property with respect to perturbations in the entries of the 
coefficient matrices? Do relevant applications exist? 

Results 

Inman (1983) was the first to give a condition for a system 
to be real symmetrizable. But his condition is difficult to check 
and therefore new conditions were given by Pommer and Kliem 
(1987). Recently, Inman and Olsen (1988) extended the sym
metrizable case to linear operators. The complex symmetriz
able case has to our knowledge not been dealt with in the 
literature. 

A main result is the following: 

Theorem 1: The real matrices B and C are simultaneously 
real symmetrizable if and only if there exist modal matrices 
TB and T c (consisting of full eigenvector sets of B and C), 
such that T B ' T C is orthogonal, or equivalent^, T B TB = T c Tj . 

The proof can be found in Pommer and Kliem (1987) and 
is based on the fact that all transformation matrices W can be 
written as product of a modal matrix and a unitary matrix. 
This fact is also useful when constructing a transformation 
matrix W, but this does not seem to be well known (see, e.g., 
Piche, 1990). 

The condition (including proof) for B and C to be simul
taneously complex symmetrizable is the same as in Theorem 
1. Notice that all matrices might be complex in this case. Then 
TB1TC "complex orthogonal" does not mean "unitary," but 
(TB1TC)~1 = (Tfl'TcVas for real matrices. 

The check of the condition in Theorem 1 is rather easy if 
we have a computer program to our disposal which can com
pute modal matrices (see Pommer and Kliem, 1987). For the 
matrix order n = 2, a geometric interpretation of Theorem 1 
might be useful: 

Theorem 2: B and C are simultaneously real symmetrizable 
if and only if (1) we can chooseTB = Tcor2) the eigenvectors 
of B and C can be chosen interleaved in the plane such that 
an eigenvector o / B alternate with an eigenvector of C, etc., 
(bi = A c, = A , b2 = A c2 = A with 0! < Vl < 02 

So for n = 2, many matrix pairs (B, C) will be simulta
neously real symmetrizable, and this property will in general 
be robust with respect to perturbations. 

In the rest of this section we will confine ourselves to the 
real symmetrizable case; but practically all the statements made 
also hold for the complex case. 

For matrix orders n > 2, a geometric interpretation of Theo
rem 1 is rather complicated. Then the condition imposes severe 
requirements on the modal matrices, which will be satisfied in 
few applications only. And if the condition is satisfied, small 
changes in the matrix entries will normally destroy this prop
erty: for « > 2, symmetrizable systems are not robust with 
respect to perturbations in the coefficient matrices. 

This pessimistic statement is in force in regard to modeling 
when the matrices B and C do not have rather pathological 
forms. There is, though, one useful exception, namely if one 
of the matrices is structurally diagonal. 

Theorem 3: IfBis any diagonal matrix and C is symme
trizable by a diagonal transformation matrix, then B and C 
are simultaneously symmetrizable. 

The proof is straightforward. 

Theorem 4: {Piche, 1990): IfB is diagonal with nonzero 
and distinct entries in the diagonal, C is arbitrary, and B and 
C are simultaneously symmetrizable, then simultaneous sym
metry can be achieved by a diagonal transformation matrix. 

Applications in Mechanics and Control 
(1) A double pendulum is subjected to a follower force P, 

acting on the free end (Hermann and Jong, 1965). For certain 
choices of the parameters we get Eq. (1) with M = I and 

Here, B and C are simultaneously real symmetrizable for 
the whole range 0 < P < 1.36, according to Theorem 2, and 
the system can easily be shown to be stable. 

For P > 1.36 the system is not symmetrizable any more and 
for some critical value of P, the system will become unstable 
by flutter. 

(2) Pfliiger's column is a simply supported undamped os
cillating bar, affected by distributed tangential forces (e.g., 
Huseyin, 1978). To give an example of a real symmetrizable 
system in the case n > 2, we add a damping force proportional 
to the velocity. The governing differential equation can, by 
Galerkins method, be converted to an eigenvalue problem: 

(\2I+\kI+C)u = 0 (3) 

where k is the coefficient of damping. 
The matrix order n of I and C is equal to the number of 

chosen mode functions. C is nonsymmetric but real symme
trizable by a diagonal transformation matrix W. Since B = 
klis also symmetric, B and Care simultaneously symmetrizable 
according to Theorem 3. Thus, stability is lost by buckling 
when det C = 0. 

(3) Piche (1990) deals with the system 

IX + BX+ CX= - yHX, (4) 

occurring in active control by position feedback. If we assume 
modal coordinates X and modal damping, B and C are both 
diagonal. But the control input matrix H is in general not 
symmetric. However, it is advantageous if Eq. (4) is real sym
metrizable; hence, it is natural to ask when this is the case. 
The answer is given by Piche (1990), here slightly improved: 

Theorem 5: System (4) with B = diag (bj) and C = 
diag[u2} is assumed to have either all b[S distinct or all ufs 
distinct. Then system (4) is real symmetrizable if and only if 
H is symmetrizable by a diagonal transformation matrix. 

The proof is immediately established by Theorems 3 and 4. 
(4) In the dynamics of symmetric rotor systems, the math

ematical model for small vibrations is usually written as (Miiller 
(1981)): 

MZ+ (Di+D2 + iQG)Z+ (K+iQD2)Z = 0 (5) 

with all system matrices M, D\ (external damping), D2 (internal 
damping), and G and K symmetric and positive semidefinite. 
fi is the angular velocity. Then both B = D\ + D2 + iQG and 
C = K + iQD2 are already complex symmetric. But sometimes 
the system is not provided in this desirable form, as in the 
following example given by Pfiitzner (1972): 

For a certain rotor, clamped in one end, the oscillations are 
modeled by 

(o 0.08 j [<pj + (0 0.2 + /0.16QJ [<pj 

fl2.54.106 + /Q /1.25.106 ~) (r) _ (6) 
+ (-/i.25«io6 o.i7.io6+/o.ioj l<P)~loy 

Here, the matrix Cis not complex symmetric. But the system 
is complex symmetrizable and can be transformed into 

(l 6) .. fO.25 0 ") . 
(o l j ^ + [ 0 2.5 + /2QJ9 

(l .57.106 + /0.125Q 1.56.106 ") 
+ (1.56-106 2.13.106 + /1.25fij<? ( ) 
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with the possibility to find a better stability limit for Q using 
a criterion of Frik (1972). 

Conclusions 
Real and complex symmetrizable systems are not robust with 

respect to perturbations in the entries of the coefficient mat
rices. So, from a modeling point of view, such systems will 
only have limited practical importance. 

Exceptions are real symmetrizable systems with matrix order 
n = 2 (Theorem 2) and real and complex symmetrizable sys
tems with any matrix order n, if special diagonality conditions 
are fulfilled (Theorem 3 and 4). 
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Determination of the Angular Velocity Vector in 
Orthogonal Curvilinear Coordinate Systems 

D. L. Richardson7 

An efficient, general procedure is developed for assembling 
the components of the angular velocity vector of orthogonal 
curvilinear coordinate frames. 

Introduction 
Consider a reference frame J and a relative motion frame 

(R whose orientation is defined relative to 5\ Let (qu q2, qi) 
be the coordinate triad associated with (R, and let r be the 
position of any point P in JF. Assume that r can be expressed 
unambiguously in terms of the #,-. We have 

r = r(tfi,#2,<73), 
and consequently, 

dr dr Jr , 
dr = — dqi+— dq2 + — dq3. 

dqi dq2 dqi (1) 

From here, define the curvilinear unit-vector basis triad (e,, 
e2, e3) through the relation 

dt , 
T- = hiti. (2) 
dqi 

Require that these unit vectors be mutually orthogonal. As a 
consequence, 

i i . i i - f0, (Vy 

dq'dq~ [hj, i=j. 
(3) 

Defined in this way, the frame (R is known as an orthogonal 
curvilinear coordinate frame with orthogonal curvilinear co
ordinates <jr,. The factors hi are called the curvilinear scale 
factors of frame (R. 

The angular velocity of (R relative to fF is the vector w that 
satisfies the relation 

rfe( 

~di 
= wXe,-, /= 1,2, 3. 

If w is written 

w = «iei + a>2e2 + o)3e3, 

(4) 

(5) 

it will be shown that the components of w are given by the 
compact expressions 

1 dh3 . 1 dh2 

h2 dq2 h dq3 

1 dhi . 1 dh3 . I 

h} dq3 hi dqi 

1 dh2 . 1 dhi . 
"3 = 7 7 " « 2 - T - - r - <7i. 

hi dq{ h2 dq2 

Proof of the Main Result 

Consider the unit vector e,- as a function of the three cur
vilinear coordinates, 

ei=ei(qi,q2,qi). 

Accordingly, its derivative is 

Gfe; 

~dt 
de,- . 9e,- . de,- . 
—~qi+ —q2 + TT Qi, 
dqi dq2 dq} 

i=l,2, 3. (7) 

In the Appendix, it is shown that the partial derivatives of the 
curvilinear unit vectors with respect to the coordinates are given 
by 

tei_}_dhl 

dqj hi dqi 
/ = 1 , 2 , 3, iyij, (8) 

and 

de,-

dqi 
1 Shi I dhi . , , , 

" f c " ^ 7 ^ _ ^ ^ ^ e ' t • >=1<2' 3> 
hj dqj hk dqk 

i*j*k. (9) 

Substituting into the right-hand sides of (7) produces 

de_ 

dt 

de2 

It 
rfe_3 

dt 

M,(- 1 dhi 1 dhx 
• r - 7 - e 2 - — • — - e 3 
h2 dq2 hi dq3 

q2 dh2 q3 dhi a + T - - r - e 2 + T-T—e3 , 
hi dqx hi dqx 

-Qt 

= Qi 

1 dh2 1 dh2 ] 
e3 ei 

hi dq3 hi dqi l) 

1 dhi 1 dhi \ 

hi dqi h2 dq2
 2) 

, q3 dh3 , <7i dhi 
1 h2 dq2 h2 dq2 

1 , <7i dhi , ki dh2 + 1TT~ e i + 7 r e2-' hi dqi hi dqi 
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with the possibility to find a better stability limit for Q using 
a criterion of Frik (1972). 

Conclusions 
Real and complex symmetrizable systems are not robust with 

respect to perturbations in the entries of the coefficient mat
rices. So, from a modeling point of view, such systems will 
only have limited practical importance. 

Exceptions are real symmetrizable systems with matrix order 
n = 2 (Theorem 2) and real and complex symmetrizable sys
tems with any matrix order n, if special diagonality conditions 
are fulfilled (Theorem 3 and 4). 
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Determination of the Angular Velocity Vector in 
Orthogonal Curvilinear Coordinate Systems 

D. L. Richardson7 

An efficient, general procedure is developed for assembling 
the components of the angular velocity vector of orthogonal 
curvilinear coordinate frames. 

Introduction 
Consider a reference frame J and a relative motion frame 

(R whose orientation is defined relative to 5\ Let (qu q2, qi) 
be the coordinate triad associated with (R, and let r be the 
position of any point P in JF. Assume that r can be expressed 
unambiguously in terms of the #,-. We have 

r = r(tfi,#2,<73), 
and consequently, 

dr dr Jr , 
dr = — dqi+— dq2 + — dq3. 

dqi dq2 dqi (1) 

From here, define the curvilinear unit-vector basis triad (e,, 
e2, e3) through the relation 

dt , 
T- = hiti. (2) 
dqi 

Require that these unit vectors be mutually orthogonal. As a 
consequence, 

i i . i i - f0, (Vy 

dq'dq~ [hj, i=j. 
(3) 

Defined in this way, the frame (R is known as an orthogonal 
curvilinear coordinate frame with orthogonal curvilinear co
ordinates <jr,. The factors hi are called the curvilinear scale 
factors of frame (R. 

The angular velocity of (R relative to fF is the vector w that 
satisfies the relation 

rfe( 

~di 
= wXe,-, /= 1,2, 3. 

If w is written 

w = «iei + a>2e2 + o)3e3, 

(4) 

(5) 

it will be shown that the components of w are given by the 
compact expressions 

1 dh3 . 1 dh2 

h2 dq2 h dq3 

1 dhi . 1 dh3 . I 

h} dq3 hi dqi 

1 dh2 . 1 dhi . 
"3 = 7 7 " « 2 - T - - r - <7i. 

hi dq{ h2 dq2 

Proof of the Main Result 

Consider the unit vector e,- as a function of the three cur
vilinear coordinates, 

ei=ei(qi,q2,qi). 

Accordingly, its derivative is 

Gfe; 

~dt 
de,- . 9e,- . de,- . 
—~qi+ —q2 + TT Qi, 
dqi dq2 dq} 

i=l,2, 3. (7) 

In the Appendix, it is shown that the partial derivatives of the 
curvilinear unit vectors with respect to the coordinates are given 
by 

tei_}_dhl 

dqj hi dqi 
/ = 1 , 2 , 3, iyij, (8) 

and 

de,-

dqi 
1 Shi I dhi . , , , 

" f c " ^ 7 ^ _ ^ ^ ^ e ' t • >=1<2' 3> 
hj dqj hk dqk 

i*j*k. (9) 

Substituting into the right-hand sides of (7) produces 

de_ 

dt 

de2 

It 
rfe_3 

dt 

M,(- 1 dhi 1 dhx 
• r - 7 - e 2 - — • — - e 3 
h2 dq2 hi dq3 

q2 dh2 q3 dhi a + T - - r - e 2 + T-T—e3 , 
hi dqx hi dqx 

-Qt 

= Qi 

1 dh2 1 dh2 ] 
e3 ei 

hi dq3 hi dqi l) 

1 dhi 1 dhi \ 

hi dqi h2 dq2
 2) 

, q3 dh3 , <7i dhi 
1 h2 dq2 h2 dq2 

1 , <7i dhi , ki dh2 + 1TT~ e i + 7 r e2-' hi dqi hi dqi 
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efei 

~dt~ 

de2 

dt 

- &)2«3 + ^3^2. 

= &)1e3-aj3e1, (11) 

de3 

— = -co1e2 + w2ei. 

Comparing coefficients of like unit vectors in the foregoing 
sets of equations produces six equations for the three unknowns 
« i , <«)2, o>3. However, three of these equations are redundant . 
This leaves three independent expressions, one for each to,-, 
which is the result displayed in Eqs . (6). 

Example 

Let EF be a Cartesian frame with rectangular components 
(X\, X2, x3), and let (R be a reference frame of parabolic co
ordinates. The coordinate t ransformation is 

X\ = qiqiCOsq3, x2 = q1q2smq3, x3 = (q\-q\)/2, (12) 

and the scale factors are 

h\ = h2 = slq\ + q2, h3 = qxq2. 

Substituting into (6) gives 

o>i-
q\q* qiqi 

o)3 = -
q\qi-qiq\ 

4^i 41^1 3 ^+<?l 

(13) 

(14) 

This result checks with that of Kane and Levinson (1990) in 
their Table 1. 

Comment 

The recent paper of Kane and Levinson (1990) provides an 
alternative method for obtaining the same results that are pro
duced by Equat ions (6). In the notat ions of this paper, their 
expressions for the components of the angular velocity vector 
are 

W! = 

US2 = 

03} = 

1 
h2h3 

1 

h3hx 

1 

dt dqj dq3 

d_dt_ 

dt dq3 

d_dt_ 

dtdqi 

. — 
dqi' 

_dr_ 

dqi 

(15) 

The position vector r is expressed in the JF frame as 

r = Xial+x2a2 + x3a3, (16) 

where (a!, a2, a3) is the Cartesian unit triad of JF with corre
sponding components (x\,x2, x3). Whenever t hex ,a re expressed 
in terms of curvilinear coordinates, the components of the 
angular velocity vector can be determined from (15) in a 
straightforward manner . 

From the point of view of computat ional efficiency, it would 
appear that Eqs . (6) of this paper require less labor than the 
expressions of Kane and Levinson. 
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A P P E N D I X 

Expressions for the partial derivatives of the unit basis vec
tors of a curvilinear system are obtained as follows. It is as
sumed throughout that / ^ j ^ k unless indicated otherwise. 

For Eq . (8), differentiate the defining relations 

dr , dr 

dqi dqj 
(17) 

and assume continuity in the second partial derivatives so that 

d2r d2r 

dqiqj dqjqt 

Rearrange the results to produce 

, de,- dhi dh: , de,-
hi r - L = - r - 1 ey + T-^ ej + hj - 1 . 

dqj dqj dqi dq, 

Now, differentiate the identity e,- • e,- = 1 to get 

dqj 

de,-
which shows that — does not have an e,- component . In ad-

dqj 
dition, this derivative does not have an ek component which 
is established as follows: F rom Eq. (3), differentiate the 
identities 

(18) 

(19) 

(20) 

dr dt dt dt dt dt 
— . — = — . = — . = 0, 

dq/ dqj dqi dqk dqj dqk 

to obtain the equation sequence 

d2t dt dt d2t d2t dt dt 
d2t 

dq,dqk dqj 

Thus, 
dqt dqjdqk dqidqj dqk 

d2r dt „ 

dqj dqtdqk 

dqtdqk dqj 

and as a consequence, 

d2r dt 
= 0. 

(21) 

(22) 

(23) 

(24) 
dqidqj dqk 

After substituting from Eq. (2), the identity above becomes 

9 de,-
hifik-— (hJ*j) = hjhkek>-J- = 0. 

dqi dqt 

(25) 

By applying the foregoing analysis to Eq. (19), it follows that 
de,- de,-
— has only an e, component , and because „ • e,- = 0, we 
dqj dq, 
have 

de, 1 dhi • . „ , 
7— = — T^e,-, i= 1,2,3, i*j. 
dqj hi dqt 

(26) 

To establish Eq . (9), differentiate the following identities 

e,-«e,- = 0, e,-«e^ = 0 

to obtain 

de,- de,- „ 

dqt dq, 

tek de,-
e / « — + e * « — = 0. 

dqi dqt 

Substituting from Eq. (26) produces 

(\ dhi \ de, 
e<* rr e «' +e,-—=o, 

\hj dqj J dqi 

1 dhi \ 9e, „ 
hkdqk I dq. 

(27) 

(28) 

(29) 

The first of these equations provides the y'th component of 
de,/dtf,-, and the second gives the kth component . In addit ion, 
the /th component is zero. Collecting results gives 

-TL=-TT-LeJ—-—Lek, i=l,2,3, i*j*k. (30) 
dqj hjdqj hkdqk 
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Eigenfrequencies of an Elastic Sphere With Fixed 
Boundary Conditions 

P. J. Schafbuch811, F. J. Rizzo911, and R. B. Thompson1 

Introduction 
One basic problem of elastodynamics which has an analytical 

solution is the free vibration of a homogeneous, isotropic elas
tic sphere. Lamb (1882) first solved this problem, and classic 
texts on elasticity such as Love (1927) often cite or reproduce 
his solution. Eringen and Suhubi (1975) provide tables of ei
genfrequencies for this traction-free boundary condition case. 
However, the equally fundamental case of fixed displacement 
boundary conditions has, to our knowledge, been largely ig
nored. Perhaps this is due to a lack of physical situations for 
which a true fixed boundary condition exists. The traction-
free boundary condition case was motivated by geophysical 
considerations. Research into boundary integral equation for
mulations of elastic wave scattering has produced a need to 
know the characteristic frequencies of the fixed displacement 
or Dirichlet problem. 

Some work has been done on this problem in a quantum 
mechanical context. In his fundamental work on the theory 
of specific heats, Peter Debye (1912) considered an elastic 
sphere with fixed boundary conditions and looked at asymp
totic limits of the size and number of eigenfrequencies. To do 
this, he developed the general characteristic equations but left 
them unsolved. In this Brief Note, we provide solutions to 
these equations for selected cases. 

Debye's Equations 
Debye's approach parallels that of Lamb in that time-har

monic motion is assumed, but he introduces both scalar and 
vector potential functions. In more modern nomenclature we 
then write the displacement field as 

u = V * + V X l l (1) 
with V «n = 0 to isolate the irrotational and incompressible 
field components. The problem can then be broken down into 
a set of three Helmholtz equations for $, IIi, and n2. Each of 
the potential functions can be written as an infinite sum where 
the angular dependence is expressed in terms of spherical har
monics. For example, 

rlii = J]A^n(lcTr)Sn (6,<j>) (2) 

where {r, d, </>) are spherical coordinates and kT is the wave 
number for a transverse (shear) wave. For each spherical har
monic, S„, there is a corresponding function \j/„ which defines 
the radial (r) dependency. These radial functions turn out to 
be Riccati-Bessel functions and are related to the spherical 
Bessel function of the first kind, j n , by the expression ^„(z) 
= ZJn(z). Note that our definition of \j/n is consistent with that 
of Debye but differs by a factor of z from that in Lamb (1882) 
and Love (1927). The expansion coefficients, e.g., A„, are 

determined via the Dirichlet boundary conditions to within a 
multiplicative constant for the eigenvalue problem. 

For the sake of brevity, the derivation will not be reproduced 
but merely the results stated. Just as with the traction-free 
case, there are two classes of motion possible. Class I motions 
are based on shear distortions where the displacement field 
remains completely solenoidal. The characteristic equation for 
this motion is expressed as a simple function of the dimen-
sionless frequency kja where a is the sphere radius. 

MkTa)=0 (3) 
Class II motion involves coupled longitudinal and transverse 

internal wave fields which taken together satisfy the boundary 
conditions. The characteristic equation is hence also a function 
of kLa, the longitudinal wave dimensionless frequency, and 
has the form 

n(.n + l)ipn(kTa)\pn(kLa) = (kTa)(kLa) 1dj/n{k1a) 
d(kjit) 

x 
d 

d(kLa) 
i>n(kLa) 

kLa (4) 

The longitudinal and transverse wave numbers are expressed 
by and related through the material's Lame constants (X,/x) 
and density (p), as shown in Love. Characteristic Eqs. (3) and 
(4) have, in general, infinitely many roots (modes m) for each 
harmonic n. 

Two similar classes of motion exist in a hollow sphere as 
discussed by Shah, Ramkrishnan, and Datta (1969). Our ap
proaches and solution methods are akin, except for differences 
relating to boundary conditions. 

Solution Method 
The eigenfrequencies associated with Class I shear motions 

are simply related to the zeroes of spherical Bessel functions 
of order n. The zeroth spherical surface harmonic is a constant 
which precludes this kind of motion. Thus, beginning with the 
first harmonic, the eigenfrequencies are 

_(m) 
,,(m) *•!> 
U>ln — 

a 
(5) 

where Znm) is the /nth zero of the nth spherical Bessel function. 
If harmonics or zeroes beyond available tabulated values 

are desired, the spherical Bessel functions can be built up from 
recursion relationships, as given by Abramowitz and Stegun 
(1965). These functions become cumbersome to generate ex
plicitly for high harmonics even with symbolic manipulation 
programs. However, the functional form need not be gener
ated. The functions' values can be generated point by point 
numerically with two-level recursion formulas. Roots of Eq. 
(3) are then found numerically in either case. 

Solutions for Class II motion can be obtained by a similar 
procedure. If the functional forms are not generated explicitly, 
recursion formulas expressing the \j/n derivatives in Eq. (4) can 
be derived from the aforementioned formulas for Bessel func
tions. The zeroth harmonic for this motion class is a special 
case. Equation (4) for n equal to zero reduces to 

kLa = tzn{kLa) (6) 
which is independent of the transverse wave number, kr, since 
the motion is purely dilatational. 
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Results 
Equation (5) showed that the eigenfrequencies of Class I 

motion are related to spherical Bessel function zeroes. Since 
these zeroes are tabulated in mathematics handbooks such as 
Abramowitz and Stegun, they will not be reproduced here. 
The eigenfrequencies of the radial (n = 0) modes of Class II 
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Table 1 Transverse wave dimensionless eigenfrequencies of Class II 
motion 

irmor 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 
11 
12 
13 

lie v -

3.98978 
9.25856 

12.49756 
16.00854 
5.77510 
10.67013 
13.99104 
18.40041 
7.29284 
12.06687 
15.57109 
8.65331 
13.46630 
17.37159 
9.92375 
14.88209 
19.29420 
11.14131 
16.32227 
12.32560 
17.78588 
13.48730 
19.26246 
14.63266 
15.76561 
16.88873 
18.00383 
19.11222 

1/4 

6.20296 
10.32782 
15.57714 
18.79676 
7.73594 

12.59144 
17.06532 

9.32252 
14.61599 
18.50656 
10.92254 
16.30743 
19.93332 
12.49147 
17.77994 

14.00203 
19.17997 
15.44445 

16.82213 

18.14550 
19.42638 

v -

4.31104 
9.30867 

12.56637 
18.35945 
6.14067 
10.75399 
14.70966 

7.60292 
12.22253 
17.12725 
8.90405 
13.74763 
19.29100 
10.13181 
15.34071 

11.32014 
16.97116 
12.48389 
18.58437 
13.63065 

14.76475 
15.88893 
17.00505 
18.11444 
19.21809 

1/3 

6.28319 
11.80491 
15.64226 
18.84956 
8.00848 
13.76003 
17.12557 

9.81182 
15.22962 
18.63066 
11.54633 
16.65140 

13.14327 
18.07228 

14.60584 
19.51348 
15.96990 

17.26947 

18.52695 
19.75568 

motion are also related to spherical Bessel function zeroes. As 
can be inferred from Eq. (6) and Bessel function relationships, 

^J* S (7) 
a "V P 

In terms of kLa, these are 4.49341, 7.72525, 10.90412, etc. 
Table 1 gives values of kTa corresponding to Class II ei

genfrequencies, col/JJ*, for Poisson's ratios of 1/4 and 1/3 and 
n > 0. All the modes with kTa less than 20 are given. For a 
Poisson's ratio of 1/4, there are 52 Class II modes in this 
range. For v equal to 1/3, there are only 47 modes. As Poisson's 
ratio increases, the material becomes less compressible, so an 
individual mode's frequency increases. The number of Class 
I modes is independent of Poisson's ratio and remains fixed 
at 38 for kTa < 20. The eigenfrequencies of each harmonic 
and Class are interlaced, but there is an orderly increase in the 
eigenfrequency for the fundamental mode of each subsequent 
harmonic. The only exception is the Class II radial modes which 
have higher frequencies than their rotatory (« = 1) counter
parts. 

Verification 
Our motivation for solving this problem also provides an 

independent means of checking the calculations. Integral equa
tion representations of exterior domain elastodynamic prob
lems are plagued by certain irregular frequencies at which the 
equation has infinitely many or no solutions. When these equa
tions are solved numerically, this difficulty presents itself as 
an ill-conditioned matrix. Martin (1991) has shown that these 
irregular frequencies are the eigenfrequencies of the associated 
interior problem with Dirichlet boundary conditions. We have 
checked the eigenfrequencies (up through harmonic five) re
ported here by comparing the condition number of a boundary 
element method (BEM) generated matrix (Rezayat, Shippy, 
and Rizzo 1986) at the predicted frequency with the condition 
number of nearby frequency matrices. The results confirm 
these calculations. 

Conclusions 
These results are useful to BEM and other integral equation 

researchers who are attempting to understand and solve the 
irregular frequency problem in elastodynamics. In particular, 
precise knowledge of all these frequencies allows countermea-
sures such as the BIFILM algorithm (Rezayat, et al., 1986) to 
be tested. These results can also serve as a check on numerical 
methods for elastic continuum modal analysis. 
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The Response Spectrum of a Nonlinear Oscillator 

Huw G. Davies12'13 and Qiang Liu12'13 

The response of a nonlinear oscillator excited by white noise 
is considered. A truncated Hermite polynomial series is used 
as an approximation to the probability density function. While 
this approach has been used before by many authors to obtain 
statistics such as the time-dependent mean or mean-square 
values, it has not been noted before that the approach can be 
extended to obtain the correlation function and spectrum. This 
series when substituted into the Fokker-Planck equation yields 
a set of time-dependent moment equations, whichcan besolved 
numerically for the correlation functions, or, after a Fourier 
transform, a set of complex algebraic equations which can be 
solved for the spectrum. Examples of spectra for the Duffing 
and van der Pol oscillators are shown. 

Introduction 
The spectrum of the random response of a system provides 

useful information in many engineering applications. It can 
be fairly easily measured on an actual structure or machine, 
and gives an immediate picture that characterizes the system 
in terms of modal resonance frequencies. For a linear system, 
the spectrum can also be calculated easily if the input spectrum 
is known (see, for example, Lin, 1967). 

For a nonlinear system, the situation is often much more 
complicated. Studies of the sinusoidal excitation of nonlinear 
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Table 1 Transverse wave dimensionless eigenfrequencies of Class II 
motion 

irmor 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 
11 
12 
13 

lie v -

3.98978 
9.25856 

12.49756 
16.00854 
5.77510 
10.67013 
13.99104 
18.40041 
7.29284 
12.06687 
15.57109 
8.65331 
13.46630 
17.37159 
9.92375 
14.88209 
19.29420 
11.14131 
16.32227 
12.32560 
17.78588 
13.48730 
19.26246 
14.63266 
15.76561 
16.88873 
18.00383 
19.11222 

1/4 

6.20296 
10.32782 
15.57714 
18.79676 
7.73594 

12.59144 
17.06532 

9.32252 
14.61599 
18.50656 
10.92254 
16.30743 
19.93332 
12.49147 
17.77994 

14.00203 
19.17997 
15.44445 

16.82213 

18.14550 
19.42638 

v -

4.31104 
9.30867 

12.56637 
18.35945 
6.14067 
10.75399 
14.70966 

7.60292 
12.22253 
17.12725 
8.90405 
13.74763 
19.29100 
10.13181 
15.34071 

11.32014 
16.97116 
12.48389 
18.58437 
13.63065 

14.76475 
15.88893 
17.00505 
18.11444 
19.21809 

1/3 

6.28319 
11.80491 
15.64226 
18.84956 
8.00848 
13.76003 
17.12557 

9.81182 
15.22962 
18.63066 
11.54633 
16.65140 

13.14327 
18.07228 

14.60584 
19.51348 
15.96990 

17.26947 

18.52695 
19.75568 

motion are also related to spherical Bessel function zeroes. As 
can be inferred from Eq. (6) and Bessel function relationships, 

^J* S (7) 
a "V P 

In terms of kLa, these are 4.49341, 7.72525, 10.90412, etc. 
Table 1 gives values of kTa corresponding to Class II ei

genfrequencies, col/JJ*, for Poisson's ratios of 1/4 and 1/3 and 
n > 0. All the modes with kTa less than 20 are given. For a 
Poisson's ratio of 1/4, there are 52 Class II modes in this 
range. For v equal to 1/3, there are only 47 modes. As Poisson's 
ratio increases, the material becomes less compressible, so an 
individual mode's frequency increases. The number of Class 
I modes is independent of Poisson's ratio and remains fixed 
at 38 for kTa < 20. The eigenfrequencies of each harmonic 
and Class are interlaced, but there is an orderly increase in the 
eigenfrequency for the fundamental mode of each subsequent 
harmonic. The only exception is the Class II radial modes which 
have higher frequencies than their rotatory (« = 1) counter
parts. 

Verification 
Our motivation for solving this problem also provides an 

independent means of checking the calculations. Integral equa
tion representations of exterior domain elastodynamic prob
lems are plagued by certain irregular frequencies at which the 
equation has infinitely many or no solutions. When these equa
tions are solved numerically, this difficulty presents itself as 
an ill-conditioned matrix. Martin (1991) has shown that these 
irregular frequencies are the eigenfrequencies of the associated 
interior problem with Dirichlet boundary conditions. We have 
checked the eigenfrequencies (up through harmonic five) re
ported here by comparing the condition number of a boundary 
element method (BEM) generated matrix (Rezayat, Shippy, 
and Rizzo 1986) at the predicted frequency with the condition 
number of nearby frequency matrices. The results confirm 
these calculations. 

Conclusions 
These results are useful to BEM and other integral equation 

researchers who are attempting to understand and solve the 
irregular frequency problem in elastodynamics. In particular, 
precise knowledge of all these frequencies allows countermea-
sures such as the BIFILM algorithm (Rezayat, et al., 1986) to 
be tested. These results can also serve as a check on numerical 
methods for elastic continuum modal analysis. 
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The Response Spectrum of a Nonlinear Oscillator 

Huw G. Davies12'13 and Qiang Liu12'13 

The response of a nonlinear oscillator excited by white noise 
is considered. A truncated Hermite polynomial series is used 
as an approximation to the probability density function. While 
this approach has been used before by many authors to obtain 
statistics such as the time-dependent mean or mean-square 
values, it has not been noted before that the approach can be 
extended to obtain the correlation function and spectrum. This 
series when substituted into the Fokker-Planck equation yields 
a set of time-dependent moment equations, whichcan besolved 
numerically for the correlation functions, or, after a Fourier 
transform, a set of complex algebraic equations which can be 
solved for the spectrum. Examples of spectra for the Duffing 
and van der Pol oscillators are shown. 

Introduction 
The spectrum of the random response of a system provides 

useful information in many engineering applications. It can 
be fairly easily measured on an actual structure or machine, 
and gives an immediate picture that characterizes the system 
in terms of modal resonance frequencies. For a linear system, 
the spectrum can also be calculated easily if the input spectrum 
is known (see, for example, Lin, 1967). 

For a nonlinear system, the situation is often much more 
complicated. Studies of the sinusoidal excitation of nonlinear 
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oscillators show how complicated the response can be, in
cluding, for example, multiple valued response, subharmonics, 
limit cycles, and chaos (Guckenheimer and Holmes, 1983; Nay-
feh and Mook, 1979). Even though present in the sinusoidal 
case, not all of these phenomena peculiar to nonlinear response 
may show up when the excitation is white noise. But the spec
trum is still a useful description of the response, although one 
must expect now that the character of the spectrum may change 
as the excitation level of the white noise is changed. 

It appears that the difficulties inherent in obtaining the spec
trum for a nonlinear oscillator have resulted in very little work 
on the topic. Of course, one can use equivalent linearization 
for an oscillator with nonlinear stiffness (Lin, 1967), but this 
approach, while surprisingly accurate for the mean-square re
sponse, is far less accurate when estimating the spectrum. A 
fairly general approach has been given by Wen (1975, 1976). 
He estimated stationary and nonstationary mean-square val
ues, probability density functions, and spectral densities based 
on numerical solutions for the eigenvalues and eigenfunctions 
associated with an appropriate Fokker-Planck equation. Wen 
was particularly interested in results for hysteretic restoring 
forces. An alternate, also numerical, approach to that of Wen 
is presented as follows. The advantages of the present approach 
are mainly that only algebraic equations have to be solved for 
the spectrum, and also that as these algebraic equations are 
generated by the computer program, the results can be esti
mated to high accuracy. 

The spectrum of a Duffing oscillator excited by white noise 
has been discussed by Miles (1989). His approach is an adaption 
of equivalent linearization, which takes into account that the 
effective resonance frequency is amplitude dependent. Miles 
averages over an ensemble of equivalent linear systems, each 
with its own equivalent resonance frequency. Iteration is used 
to find an appropriate constant involved in the determination 
of higher order ensemble averages. His approach seems to 
estimate accurately both the increase of the effective resonance 
frequency and the broadening of the resonance peak as the 
excitation amplitude is increased. The approach can be ex
tended to nonlinear oscillators with more complicated nonlin
ear stiffness, but cannot be used for oscillators with nonlinear 
damping. 

Liu and Davies (1988,1990a) have shown how nonstationary 
probability density functions describing the response of oscil
lators with nonlinear damping and stiffness can be obtained 
by using a truncated series of Hermite polynomials as an ap
proximate solution of a Fokker Planck equation for the joint 
pdf p{x, x; t). In the stationary case, this approach has been 
discussed for example by Crandall (1980). In the nonstationary 
case the coefficients in the series are time-dependent expected 
values E[Hm(x)H„(x)\ where Hm and H„ are Hermite poly
nomials. 

The approach described in Liu and Davies (1988, 1990a) is 
extended here to find the correlation function E[x(ti)x(t2)] 
of the response, and hence the spectrum S(co, tt). We note 
that the fourth-order joint pdf p(x{t\), * ( / i ) ; x(t2), x(t2)) 
satisfies the same Fokker Planck equation as before. A set of 
first-order differential equations for moments such as 
E[x(tx)Hm(x{t2))H„(x(t2))] can be obtained from the Fok
ker-Planck equation—the required correlation function being 
given, of course, by choosing m = 1 and n = 0. The initial 
conditions required to solve these differential equations are 
the (possibly time-dependent) moments obtained earlier (Liu 
and Davies, 1988, 1990a). We actually find it more convenient 
to take a single-sided Fourier transform of these differential 
equations and solve a set of complex algebraic equations di
rectly for the spectrum. 

Applications are shown below for the Duffing oscillator', 
showing the change in resonance frequency and broadening 
of the resonance peak as the excitation level increases (as shown 
by Miles (1989)), and for the van der Pol oscillator, showing 

a limit cycle-type response which is quenched as the excitation 
level increases. 

Non-Gaussian Closure and Spectrum 
Although the method to be described can be applied to a 

fairly general case, we consider here just the second-order 
system 

x = v (1) 

v=-x-fiv-g(x,v) + hW (2) 

where g is a nonlinear function of x and v = x, Wis stationary 
Gaussian white noise with zero mean and correlation R(f) = 
28(T), and h is a constant switched from zero at time t = 0. 
It will be assumed that g is a symmetric function so that E[x] 
= 0 and E[p] = 0, although as shown in Liu and Davies (1988, 
1990a), a more general nonlinear function can be handled. 

As shown in Liu and Davies (1988, 1990a), the response 
probability density function is approximated by the truncated 
series 

^ ^ 2 w l ( L ( O e X 4 ~ ^ + * f ) ] 
k+j=N 

x J ] Ckj(t)H\H] (3) 
k+j=0 

where 

y,=x/adt), u^v/a^t), o\(t)=E[x\ a2
2(t) =E[v\ 

H\ = Hk(y,), H2j=Hj(Ul), Ckj{t)=E[H[HJ}/k\j\, and 

Hk(') and / / ) ( • ) are Hermite polynomials. 

The pdf (3) satisfies the Fokker-Planck equation associated 
with Eqs. (1) and (2): 

£ = ¥ + " ? - F - U f r + x+glx, v))p]-hld-£ = 0. (4) 
dt dx dv dv 

A set of equations for the unknown response statistics a\, a2, 
and Cm„ can be obtained by substituting Eq. (3) into (4) and 
making use of the orthogonality properties of the Hermite 
polynomials: 

Cmn-\— [mCm„ + Cm-2i „]-i— [nCm„ + Cmt„-.2] 

a2 

[(«+ l)Cm_! „+1 + Cm_i „_J 
°i 

H— [(w + l)Cm+it n-\ + Cm-\t „_i] 
^m, n-2\ 

02 

h2 n f f + °° 
—2Cm< „_2 + —- I g(x, v)Hi

mH2
n.xpaxa2dyydul = 0 

a2 (j2m\n\ J J_„ 

(Ti(0) = (72(0) = 0, Cm„(0) = 0, (m + n*0). (5) 

The solution of Eq. (5) gives all the time-dependent response 
statistics up to order N. One can substitute these statistics into 
expression (3) to approximate the nonstationary joint response 
probability density function. Some examples have been dis
cussed in Liu and Davies (1988, 1990a). 

We turn now to the correlation function. It is convenient to 
defineX\ = x(tx), v{ = v(t1),x2 = x(t2) and v2 = v(t2), and 
to write t2 - tx + r. The Fokker-Planck equation is rewritten 
with the notation t — T, X — x2 and v — v2. The new Fokker-
Planck equation is satisfied by the conditional probability/? (x2, 
v2, T\XI, CI) and hence also by the joint probability 

p(x\, vi-.x2, v2; r)=p(x2, v2, 7l*i, ci)p(*i, vd (6) 

where p{X\, v{) is the stationary pdf. 
We define 
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<t>mn = — Hm °1 
X2)Hn * 

=yiHm{y2)H„(u1) 

=yiHlH2n (7) 
where we note now that <j\ and o-2.are the stationary values. A 
set of coupled differential equations for Bmn = E[<j>mn]/m\n\ 
can then be obtained from the relationship 

III! £,<t>mndx\dx2dvldv1 = 0 (8) 

and the recurrence relations of the Hermite polynomials. For 
example, 

JJiiaf0" dxidx2dvidv2 = 
dBm, 

dr 
(9) 

and 

I I ! J - dx2 
4>mn dxidx2dvxdv2 

= -j J J ] ] u2yxmHx
m.xH\pdxxdx2dvxdv2. 

The final equation is 

"2 

o\ 
m\nl((n+l)Bm„hm+l+B, m-U n-l) (10) 

dB, 'mn ^ [ ( « + l )5 m _ 1 , „ + 1 + J B m _ , , „_ 1 ] 
dr o\ 

+ — [(m + l)Bm+li n _ , + B m _ l i „_,] 

+ 0{nBmn + Bmt „_2] 

—3*m. n-2 + —^-7E[g(X2, Pfrl>m. B - l ] = 0 (11) 

02 o2m\n\ 
The initial conditions required to solve this set of coupled first-
order differential equations for Bm„(f) are given by 

(12) Bmn(0) = ElylHm(yl)H„(ul)] 

= (w + l)Cm+1, „ + Cm_i, „ 
where the Cmn here are the stationary values obtained from 
the previous analysis (Liu and Davies, 1988, 1990a). We then 
have, for example, that the autocorrelation of the response is 

R(r)=E[x(T)x(t + r)] = <J\Bw(T). (13) 

The set of Eqs. (11) is linear, provided of course that the 
nonlinear function g(x, v)4>m, „ - \ can be written as a sum of 
Hermite polynomials. This is obviously the case if g consists 
of polynomial terms; for example xi or x2v. In this case, the 
spectrum can be obtained by taking the single-sided Fourier 
transform 

Smn( Bmn(r)e™dT. (14) 

(15) 

The initial conditions enter the equations since 

I °° dB 
-^e™dT=-Bmn{0)-io>Smn. 

Equation (11) is thus transformed to a set of coupled complex 
algebraic equations. The spectrum of the response (the Fourier 
transform of R(r) in Eq. (13)) is given by 

S(w) = o?(S10 + Sr0)/2ir (16) 

where the asterisk denotes the complex conjugate. 

Applications 
In the stationary limit, the set of Eq. (5) for Ckm (t) as t-~ oo 

becomes algebraic. As the Fourier transformed set (11) is also 
of course algebraic, in principle the spectrum can be found by 
solving two sets of only algebraic equations, the first nonlinear 
(in ff] and a2, although linear in Ckm), and the second (for Smn) 
linear. In practice it turns out to be more convenient to solve 
the full time-dependent equations for Ckm then once the coef
ficients seem to be close to a stationary limit, to use these 
values as an initial guess for the solution of the time-inde
pendent algebraic version of Eq. (5). The solution for Smn once 
the Ckm are known requires only matrix inversion. It should 
be pointed out that the computer program itself generates the 
sets of equations; this enables very large numbers of equations 
to be used. In the van der Pol example below, we use k + m 
= 20, and thus involve 120 coefficients in the Hermite series 
approximation to the pdf. It has been found that the subse
quent solution for the terms S„,„ often requires a smaller value 
of N. We note also that the form of the equations shows that 
Sm„ = 0 for (m + n) even. 

Details of the numerical procedures have been discussed 
more fully by Liu and Davies (1990b) for a more general 
second-order system. Liu (1990) has also extended the results 
to oscillators with hysteretic restoring forces, requiring a triple 
summation approximation to the pdf. 

POWER SPECTRUM 

0.5 2.5 1 1.6 2 

FREQUENCY 
Fig. 1 The response spectra of a Duffing oscillator to different exci
tations. 0 = 0.2, a = 0.5; A:h = 0.1, B:h = 0.4, C:h = 0.8 m + n < 10, 
giving 35 equations. 

POWER SPECTRUM 

1 1.5 2 

FREQUENCY 
Fig. 2 The response spectra of a van der Pol oscillator to different 
excitations. /S = -0.2, a = 0.2; A:h = 0.4, B:h =1.2, O.h = 2.4. m + 
n < 20, giving 120 equation for pdf, but M = n s 16, giving 80 equations 
for Sm„. 
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Figure 1 shows the spectrum for a Duffing oscillator with 
g(x, v) = ax2'. As the excitation level increases the resonance 
frequency increases, and the width of the resonance peak also 
increases. This is in keeping with the result of Miles (1989). 
An increase in the response level causes an increase in the 
effective resonance frequency; a random response contains all 
amplitudes each with its effective resonance frequency and 
contributes to the broadening of the peak. 

Figure 2 shows the spectrum for a van der Pol oscillator 
with g(x, v) = ax3v and /3 = - a in Eq. (2). In the case of 
sinusoidal excitation with a frequency close to one, at low 
excitation levels, the response has components at the excitation 
frequency and at the entrained free-oscillation frequency of 
one. As the excitation amplitude is increased beyond a critical 
value the free-oscillation decays. Fig. 2 shows for the random 
case a large peak at a frequency v = 1 for small excitation 
levels. The peak broadens considerably and flattens as the 
excitation level is increased suggesting that the free-oscillation 
component is also partly quenched in the random case. 

Conclusion 
Some results have been obtained for the spectrum of the 

response of nonlinear oscillators to white noise excitation. The 
results are obtained as an extension of previous work by the 
authors (Liu and Davies, 1988, 1990a) and complement earlier 
work by Miles (1989) and Wen (1975, 1976). 

The work was supported by the Natural Sciences and En
gineering Research Council of Canada. 
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Extension of Vlasov's Semi-membrane Theory to Rein
forced Composite Shells 

V. Birman14 

Governing equations/or the statics and dynamics of reinforced 
composite shells are developed based on Vlasov's semi-mem
brane shell theory. These equations have closed-form solutions 
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illustrated for buckling and free vibration problems. The buck
ling solution converges to the known result for unstiffened 
isotropic shells. 

Introduction 
Reinforced composite shells have been a subject of a number 

of analytical studies. Typically, these studies were based on 
Donnell-type theory of shells (Block, 1968;Bogdanovich, 1986; 
Birman, 1988,1990a, 1990b; Birman and Bert 1990). Donnell's 
shell theory is usually acceptable, if the axial or circumferential 
size of deformation waves is small. A comparison of Donnell, 
Morley, Love, and Sanders shell theories applied to unstiffened 
composite shells was performed by Bert and Reddy (1982). It 
was shown that Donnell-type theory yields results, which are 
in a good agreement with other theories if the radius-to-thick
ness ratio exceeds 20. However, it is necessary to note that 
Donnell's shell theory is not appropriate for long shells. In 
addition, this theory has been used to develop closed-form 
solutions only for one type of boundary condition. 

Vlasov (1944) developed a theory for long isotropic cylin
drical shells where stress couples Mx and Mxy and the transverse 
shear stress resultant Qx are negligible (here, x and y are axial 
and circumferential coordinates, respectively). 

In addition, the middle surface of the shell was assumed 
inextensible in the circumferential direction, i.e., ^ = 0 and 
in-surface shearing deformations were neglected (yxy = 0). 

The theory based on these assumptions is called Vlasov's 
semi-membrane shell theory. An example of application of this 
theory to stability problems of isotropic cylindrical shells sub
ject to axial compression can be found in Vol'mir's monograph 
(1967). Note that Vlasov's semi-membrane theory is based on 
Love's first approximation shell theory whose particular case 
it represents. 

In this Note, Vlasov's theory is extended to long, reinforced 
composite cylindrical shells. Obviously, reinforcements should 
be light and closely spaced to justify the assumptions of the 
theory. 

Governing Equations 
Consider a symmetrically laminated cylindrical shell rein

forced by axial and circumferential stiffeners. The strain-dis
placement relationships used in Vlasov's semi-membrane theory 
are 

w w 
ey=v,y-^ = ° Ky = ~w,yy-^i 

v x 

Ixy = U,y + V,x = 0 Kxy = - W\xy - ^ (1) 

where all notations are standard and the radial deflection w 
is positive if directed to the center of curvature. The stresses 
in the shell and stiffeners can be calculated as functions of 
strains using Hookean relationships omitted for brevity. The 
axial stress resultant and the circumferential stress couple used 
in the analysis are 

Nx=Anex+^lS(y-ys)EsAs(ex + zsKx) 
S 

My = DUKX + D22Ky + 2 5 (x - xr)ErIorKy (2) 
r 

where An is the axial extensional stiffness of the shell, Dy are 
its bending stiffnesses, Ar and 4̂., are stiffener cross-sectional 
areas, xr and ys are coordinates of the stiffener centroids, Es 
and Er are the moduli of elasticity of the stiffeners, Ior is the 
moment of inertia of a ring stiffener about the shell middle 
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Figure 1 shows the spectrum for a Duffing oscillator with 
g(x, v) = ax2'. As the excitation level increases the resonance 
frequency increases, and the width of the resonance peak also 
increases. This is in keeping with the result of Miles (1989). 
An increase in the response level causes an increase in the 
effective resonance frequency; a random response contains all 
amplitudes each with its effective resonance frequency and 
contributes to the broadening of the peak. 

Figure 2 shows the spectrum for a van der Pol oscillator 
with g(x, v) = ax3v and /3 = - a in Eq. (2). In the case of 
sinusoidal excitation with a frequency close to one, at low 
excitation levels, the response has components at the excitation 
frequency and at the entrained free-oscillation frequency of 
one. As the excitation amplitude is increased beyond a critical 
value the free-oscillation decays. Fig. 2 shows for the random 
case a large peak at a frequency v = 1 for small excitation 
levels. The peak broadens considerably and flattens as the 
excitation level is increased suggesting that the free-oscillation 
component is also partly quenched in the random case. 

Conclusion 
Some results have been obtained for the spectrum of the 

response of nonlinear oscillators to white noise excitation. The 
results are obtained as an extension of previous work by the 
authors (Liu and Davies, 1988, 1990a) and complement earlier 
work by Miles (1989) and Wen (1975, 1976). 
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Extension of Vlasov's Semi-membrane Theory to Rein
forced Composite Shells 

V. Birman14 

Governing equations/or the statics and dynamics of reinforced 
composite shells are developed based on Vlasov's semi-mem
brane shell theory. These equations have closed-form solutions 
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illustrated for buckling and free vibration problems. The buck
ling solution converges to the known result for unstiffened 
isotropic shells. 

Introduction 
Reinforced composite shells have been a subject of a number 

of analytical studies. Typically, these studies were based on 
Donnell-type theory of shells (Block, 1968;Bogdanovich, 1986; 
Birman, 1988,1990a, 1990b; Birman and Bert 1990). Donnell's 
shell theory is usually acceptable, if the axial or circumferential 
size of deformation waves is small. A comparison of Donnell, 
Morley, Love, and Sanders shell theories applied to unstiffened 
composite shells was performed by Bert and Reddy (1982). It 
was shown that Donnell-type theory yields results, which are 
in a good agreement with other theories if the radius-to-thick
ness ratio exceeds 20. However, it is necessary to note that 
Donnell's shell theory is not appropriate for long shells. In 
addition, this theory has been used to develop closed-form 
solutions only for one type of boundary condition. 

Vlasov (1944) developed a theory for long isotropic cylin
drical shells where stress couples Mx and Mxy and the transverse 
shear stress resultant Qx are negligible (here, x and y are axial 
and circumferential coordinates, respectively). 

In addition, the middle surface of the shell was assumed 
inextensible in the circumferential direction, i.e., ^ = 0 and 
in-surface shearing deformations were neglected (yxy = 0). 

The theory based on these assumptions is called Vlasov's 
semi-membrane shell theory. An example of application of this 
theory to stability problems of isotropic cylindrical shells sub
ject to axial compression can be found in Vol'mir's monograph 
(1967). Note that Vlasov's semi-membrane theory is based on 
Love's first approximation shell theory whose particular case 
it represents. 

In this Note, Vlasov's theory is extended to long, reinforced 
composite cylindrical shells. Obviously, reinforcements should 
be light and closely spaced to justify the assumptions of the 
theory. 

Governing Equations 
Consider a symmetrically laminated cylindrical shell rein

forced by axial and circumferential stiffeners. The strain-dis
placement relationships used in Vlasov's semi-membrane theory 
are 

w w 
ey=v,y-^ = ° Ky = ~w,yy-^i 

v x 

Ixy = U,y + V,x = 0 Kxy = - W\xy - ^ (1) 

where all notations are standard and the radial deflection w 
is positive if directed to the center of curvature. The stresses 
in the shell and stiffeners can be calculated as functions of 
strains using Hookean relationships omitted for brevity. The 
axial stress resultant and the circumferential stress couple used 
in the analysis are 

Nx=Anex+^lS(y-ys)EsAs(ex + zsKx) 
S 

My = DUKX + D22Ky + 2 5 (x - xr)ErIorKy (2) 
r 

where An is the axial extensional stiffness of the shell, Dy are 
its bending stiffnesses, Ar and 4̂., are stiffener cross-sectional 
areas, xr and ys are coordinates of the stiffener centroids, Es 
and Er are the moduli of elasticity of the stiffeners, Ior is the 
moment of inertia of a ring stiffener about the shell middle 
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surface, and zs is a distance between the middle surface and 
the centroid of an axial stiffener positive, if the stiffener is 
attached to the internal surface of the shell. 

Equations of equilibrium or motion are obtained from Love's 
first-approximation shell theory: 

**x,x "i" **xy,y ~~ Qx 

Nxy,X + Nyiy--My,y = Qy 

M„ v+ R 
(3) 

where qx and qy are in-surface distributed loads and q is an 
outside pressure. 

The compatibility equation is 

R^ (4) 

Combining Eqs. (3) and (4) and using (2), one obtains the 
following differential equation: 

1 „ Es An 

- - QQMy + -^ QwtXXXX+ — d0 i2 """ I ,aa«or = ~RQQ (5) 

where 

9(3' 
+ 1 

x 
a = R 

_y_ 
R 

An =Au + X 8^y-ys)EAs 
s 

Es=^j&(y-ys)EsAszs 

Q = - Q,ffl - Qx,aa + QyS- (6) 

The substitution of My from (2) into (5) and the exclusion of 
the operator (d2/d/32 + 1) yield 

D22QQw+A2Qwiaa00 + EsRwiClaaaW+AnR
2w,aaaa = - R4Q,m 

where 

A>2=A>2+2su-x r)£ r/0, 

(7) 

(8) 

In a particular case of an isotropic shell, Eq. (7) reduces to 
that presented by Vol'mir (1967). 

Note that the present theory is applicable in the case of light, 
closely spaced stiffeners. This justifies the application of the 
smeared stiffeners technique. Therefore, 

Hy-ys) = i/is 

8(x-xr) = l/lr 

where 4 and lr are the spacings of the corresponding stiffeners. 

Buckling Problem. If the shell is subject to an axial loading 
Nu q = -Af,w i r o qy = -JVi»,„, and qx = 0. Substituting 
these expressions into Q given by (6) and using (1), one obtains 

Q = - ^ 2 (W„«-W,ttaft3). (9) 

Suppose that 

w=Wsin n/3, (10) 

n being an integer. Then (7) yields an ordinary differential 
equation for W: 

(AnR
2-EsRn2)Waaaa + n2l(l-n2)n2Dn 

+ («2+ l)N1R
2]W,aa + D22n\l-n2)2W=0. (11) 

The integral of (11) includes four constants of integration. If 

the ends of the shell are clamped, i.e., w = w a = 0, the 
substitution of the integral of (11) into the boundary conditions 
and the nonzero requirement for constants of integration yield 
the buckling equation. Another type of boundary condition 
can be formulated, if the shell is supported by equally spaced 
elastic bulkheads. Then for each span of the shell the boundary 
conditions are wiQr = 0, w{L, 0) = ±gQx(L, 0) where g is a 
bulkhead radial compliance and Q*is the transverse shear stress 
resultant. Notably, although Qx, Mx, and Mxy were neglected 
to develop the governing equation, in reality they exist, al
though negligible compared to Qy and My. Therefore, Qx can 
be expressed in terms of w using Eqs. (1) and 

Qx=Mx<x+MxyJ, 

Mx = DUKx + DnKy+ 2 8(y-ys)Es(Aszsex + 

Mxy = D66Kxy 

u= [/sin «/3 U= -

v = V cos «j3 K x = - 2Rn WiX. (12) 

The expression for the twisting stress couple can be extended 
to include torsional stiffnesses of reinforcements without sig
nificant complication of the analysis. 

If the ends are simply supported and unrestricted against 
axial movements (Nx = 0), 

mirR 
W=fsin \a X = - (13) 

where m is an integer satisfies the boundary conditions. Critical 
loads obtained from (11) are 

Nx„= 
(AnR

2-EsRn2)\4 + n4(n2-l)Dl2K
z + n4(n2-l)2D22 

n2(n2+\)R2\2 

(14) 

The buckling load corresponding to a chosen value of n is 
obtained from (14) where X = X obtained by minimization of 
Nicr with respect to X. If the shell is unstif fened and the material 
is isotropic, these results converge to the solution obtained by 
Vol'mir (1967). 

Vibration Problem. In this problem, q = -pw,„, qx = 
-puitt, and qy = -pf ,« , p being the mass per unit area 

P = P + ^]8{y-ys)psAs+^]5(x-xr)prAr. (15) 
s r 

In (15), p is the mass per unit area of the unstiffened shell 
and ps, pr are mass densities of stiffener materials. Using 

w=Wei0"smnP, (16) 

and smeared stiffeners technique, one obtains a dynamic coun
terpart of (11): 

(A~! ,i?2 - EsRn2) W,aaaa + [Dnn\\ -n2)+ pRW] W,aa 

+ [D22n\l -n2)2-pR4n2(n2 + l),u>2] W= 0. (17) 

If the shell is simply supported and (13) can be used, the 
corresponding squared frequency is 

2_(AnR
2-EsRn2)\'i + n4(n2-l)Dl2k

2 + n'i{n2-\)2D22 

" pR4[h2 + n2(n2+\)] 
(18) 

The integral of (17) can also be subject to other boundary 
conditions discussed above yielding the frequency equation for 
these cases. 

Concluding Remarks 
Important conclusions can be obtained from (14) and (18). 

Ring stiffeners always increase buckling loads and natural fre-
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quencies of semi-membrane cylindrical shells. Axial stiffeners 
have the same effect in all practically important situations. 

Limitations of the semi-membrane theory, i.e., shell and 
stiffener geometries and material characteristics appropriate 
for its application can be established by comparison of results 
(14), (18) with available solutions. It would be preferable to 
use Love's first-approximation theory for the comparison, since 
Vlasov's theory represents its particular case. An extensive 
parametric analysis necessary to formulate these limitation 
exceeds the scope of this Note. 

Vlasov's semi-membrane theory of isotropic shells represents 
a particular case of the. theory developed here. The advantage 
of the present theory is that it can be used to obtain closed-
form solutions for various boundary condition which are not 
available using other theories of shells. 
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Stability of Flow Between Two Rotating Cylinders in 
the Presence of a Constant Heat Flux at the Outer Cyl
inder and Radial Temperature Gradient: Narrow Gap 
Problem 

M. A. Ali15, H. S. Takhar16, and V. M. Soundalgekar17 

Introduction 
The study of the effects of constant heat flux at the inner 

cylinder on the stability of flow of a viscous incompressible 
fluid between two rotating concentric cylinders was presented 
by Takhar et al. (1988) in the case of a narrow gap. Instead 
of constant heat flux at the inner cylinder, if there is a constant 
heat flux at the outer cylinder, how is the stability of flow 
affected? This question is studied in this paper. All the earlier 
references on this topic are referred in Takhar et al. (1988). 
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Mathematical Analysis For a three-dimensional, axisym
metric, and incompressible viscous flow, and neglecting viscous 
dissipative heat, the steady state solutions can be shown to be 

u=w = 0, V-
. B 

--Ar+ — 
r 

Q2Rz~ A = 
\t\Ry I\{I\2 ("I — " 2 / 

Rl-R\ 
B 

R\-R\ 

e=T- T ^ l n ^ 
1 K R{ 

(1) 

where Ru R2 are the radii of the inner and the outer cylinders, 
respectively. For the velocity field, the usual no-slip boundary 
conditions are assumed and for the temperature field. For 
constant heat flux at the outer cylinder and the inner cylinder 
at temperature Tu the boundary conditions are assumed as 
follows: 

dT a 
T= Tx at r=Ri and — = $ at r=R2. 

dr K (2) 

Here, (w, v, w) are the velocity components in the (/•, 6, z) 
directions, AT is the thermal conductivity, and q is the constant 
heat flux at the outer cylinder. 

Following the usual procedure for deriving the differential 
equations for the marginal state of stability, we can show that 
these differential equations are as follows for a narrow gap: 

(D2 - c??u = - fl2Ta[g(x)i; + N>(g(x))26] (3) 

(Lr2-a1)v = u (4) 

(D2-cr2)6 = u (5) 

with following boundary conditions: 

u=Du=V=6 = 0atx = 0 

u = Du=V=D6 = 0atx=l. (6) 

The nondimensional quantities are defined as follows: 

d 
d=R2 

• ' • • ' - ^ • " - n 

a = \d, /t = 02/Qi, g ( * ) = l - ( l 

2A_}_ 

Qx Pr 
Pr = , - / * ,« = — 2 « , » = 7 r ~ 

lAd* 

jX)X 

qR2) 

T a = -
4yiG1d

4 

, Ra = 

PrQ?d« ( ^ ] « 

n 
Pia(qR2/K)Q2 _ R a 

4A Ta' 

Here, Ra is the Rayleigh number, Ta is the Taylor number, 
Pr is the Prandtl number, and N is the ratio of Ra and Ta. 
The only difference between the present set of Eqs. (3)-(6) and 
those of Eqs. (12)-(15) of Takhar et al. (1988) is that the sign 
of TV in Eq. (3) is positive in the present case and here the 
boundary conditions on 6 are interchanged. Thus, we have a 
two-point boundary value problem defined by Eqs. (3)-(5) with 
boundary conditions (6) for determining the eigenvalues ac, 
Tac for given values of p and N. Here, ac, Tac are the critical 
values of the wave number a and the Taylor number Ta. Tac 

helps us determine the speeds of the two cylinders in relative 
motion at which the transition in the fluid-flow takes place 
from its initial state to its final unstable state with the corre
sponding ac which then determines the spacing of the vortices 
in the axial direction. 

Results and Discussion These values of ac and Tac are listed 
in Table 1 and in order to get the physical insight into the 
problem, we show the variation of Tac in Figs. 1-2. To compare 
the effect of constant heat flux at the outer cylinder, CHF0, 
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where Ru R2 are the radii of the inner and the outer cylinders, 
respectively. For the velocity field, the usual no-slip boundary 
conditions are assumed and for the temperature field. For 
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dr K (2) 

Here, (w, v, w) are the velocity components in the (/•, 6, z) 
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Here, Ra is the Rayleigh number, Ta is the Taylor number, 
Pr is the Prandtl number, and N is the ratio of Ra and Ta. 
The only difference between the present set of Eqs. (3)-(6) and 
those of Eqs. (12)-(15) of Takhar et al. (1988) is that the sign 
of TV in Eq. (3) is positive in the present case and here the 
boundary conditions on 6 are interchanged. Thus, we have a 
two-point boundary value problem defined by Eqs. (3)-(5) with 
boundary conditions (6) for determining the eigenvalues ac, 
Tac for given values of p and N. Here, ac, Tac are the critical 
values of the wave number a and the Taylor number Ta. Tac 

helps us determine the speeds of the two cylinders in relative 
motion at which the transition in the fluid-flow takes place 
from its initial state to its final unstable state with the corre
sponding ac which then determines the spacing of the vortices 
in the axial direction. 

Results and Discussion These values of ac and Tac are listed 
in Table 1 and in order to get the physical insight into the 
problem, we show the variation of Tac in Figs. 1-2. To compare 
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Table 1 Values of the critical Taylor number Tac and the critical wave number 

N Tac N Tac 

Toc x 10"
3 

16.0-

14 0-

120-

10-0-

80i 

60-

4-0-

20-

0-

0.0 

0.25 

0.5 

0.75 

1.0 

CHFj — 
C H F 0 -

^ ^ = r 

1.0 
0.75 
0.50 
0.25 
0.0 
1.0 
0.75 
0.50 
0.25 
0.0 
1.0 
0.75 
0.50 
0.25 
0.0 
1.0 
0.75 
0.50 
0.25 
0.0 
1.0 
0.75 
0.50 
0.25 
0.0 

— 

"^^r.-—-V 

2.911 
3.005 
3.037 
3.077 
3.127 

2.929 
2.962 
3.003 
3.053 
3.120 

2.887 
2.925 
2.972 
3.035 
3.118 

2.851 
2.892 
2.944 
3.016 
3.118 

2.820 
2.861 
2.918 
2.998 
3.119 

^ > 0-25=// 

//> 075=M 

2057.5 
2282.8 
2562.7 
2919.6 
3390.0 

1530.9 
1720.5 
1962.8 
2283.1 
2725.3 

1175.2 
1338.2 
1552.8 
1847.3 
2275.4 

926.3 
1067.9 
1259.5 
1532.7 
1951.5 

746.7 
870.5 
1042.5 
1296.7 
1707.8 

-0.25 

-0.5 

-.75 

.1.0 

1.0 
0.75 
0.50 
0.25 
0.0 
1.0 
0.75 
0.5 
0125 
0.0 
1.0 
0.75 
0.5 
0.25 
0.0 
1.0 
0.75 
0.50 
0.25 
0.0 

3.030 
3.050 
3.076 
3.107 
3.145 

3.080 
3.103 
3.129 
3.161 
3.199 

3.108 
3.169 
3.236 
3.312 
3.407 

2.989 
3.276 
3.567 
3.808 
3.999 

2866.4 
3148.6 
3491.9 
3918.2 
4461.4 

4151.0 
4554.3 
5043.2 
5647.8 
6413.8 

6231.1 
6967. 
7880.5 
9032.5 
11361.8 

9507.0 
11297.3 
13380.5 
15794.5 
18662.9 

0 0-25 0-50 075 1.0 N 

Fig. 1 Variation of Tac for ( + p) 
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Fig. 2 Variation of Ta„ for ( - p) 

with that at the inner cylinder, CHF], we have plotted the 
values of Tac taken from Takhar, Ali, and Soundalgekar (1988) 
on the same graphs for the same values of /* and TV. It is 
interesting to note from these two figures that for both ±JX, 
the flow is more stable in both the cases of co-rotating and 
counterrotating cylinders when there is a constant heat flux at 
the inner rotating cylinder, because Tac is found to increase 
with increasing N and /J. in the presence of CHF at the inner 
rotating cylinder. But in the presence of constant heat flux at 
the outer cylinder, the values of Tac are found to decrease with 
increasing TV, i.e., the fluid flow gets destabilized owing to 
increasing values of N where n is constant. However, the trend 
for instability is different in the case of co-rotating and coun
terrotating cylinders. In the presence of co-rotating cylinders, 
Fig. 1, when p increases due to increasing the rotational speed 
of the outer cylinder, Tac decreases, which can be physically 
interpreted as the flow getting destablizied early as the angular 
speed of the outer cylinder goes on increasing as compared to 
that of the inner cylinder in the presence of CHF at the outer 
cylinder. But in the presence of counterrotating cylinders, Fig. 
2, as the angular speed of the outer cylinder increases, as 
compared to that of the inner cylinder, the flow getsmore and 
more stable, because the value of Tac is observed to increase 
with increasing ( - fi}. 

It is interesting to note that an increase in N leads to a 
decrease in the value of ac in the presence of constant heat flux 

at the outer cylinder, whereas in the presence of constant heat 
flux at the inner cylinder, ac is observed to increase with in
creasing the value of N. Thus, due to constant heat flux at the 
inner cylinder, the spacing between the vortices increases in 
the axial direction where N increases. But an increase in N 
leads to an increase in spacings between the vortices in the 
axial direction in the presence of constant heat flux at the outer 
cylinder. 

Conclusions 
(1) The fluid flow is more stable when the two cylinders 

are counterrotating with CHF at the outer cylinder. 
(2) In the presence of CHF at the outer cylinder, the fluid 

flow gets destablizied owing to increasing N for all p. The 
destabliziation is greater when the angular speed of the outer 
cylinder (ji > 0) steadily increases. But the flow gets stable more 
and more when the angular speed of the outer cylinder (/i < 0) 
increases more and more when N is constant. 
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BRIEF NOTES 

On the Validity of Bilinear Restoring Characteristics for 
Elastoplastic Beam Vibrations 

H. Schmieg18'20 and P. Vielsack1940 

We consider elastoplastic vibrations of an initially horizontal 
cantilever beam subject to vertical movements 

y = AsinQt (1) 
of the support. An elastic-viscous-plastic one-degree-of-free-
dom model is shown in Fig. 1. Its equation of motion 

ml2 (<p + -cosip ) + M(ip, ip) = mg(cos<p (2) 

contains the history-dependent restoring characteristic M(<c, 
ip) of the three element unit. Plastic states are associated with 
irreversible angle increments. Denoting ipti") as sum of all in
crements up to the nth, the plastic state the restoring char
acteristic reads 

Fig. 1 Rigid-body model 

M(<p, ip) 
(k(<p-<p\n))+d<p\ \<p-<p\n)\<Mp/k; p 5 0 
{Mpsgnip + dip; <psgnip><pj")sgnip+Mp/k; ip^Q. 

(3) 

All data are taken from an actual beam made of mild steel 
with length 1= 200 mm, rectangular cross-section b/h = 20 mm/ 
2 mm, £=2-105 N/mm2, yield stress cro = 300 N/mm2. This 
gives the spring constant A: = 3EI/^=37 Nm and the plastic 
moment Mp = a0bh2/4 = 5.95 Nm. The single mass is m-1.5 
kg. Excitation is determined by the amplitude A = 3 mm and 
a frequency ratio Q/co = 0.98, where w = (k/mf)i/2. 

To discuss the influence of the viscous part in the three-
element unit, we investigate two values of the dimensionless 
damping parameter D= (d/2)/(m(2w). A small number 
D = 0.0015 is measured for pure elastic motion. In the case of 
multiple plastic states, the viscous damping characteristic must 
capture the pointed loops of the restoring characteristic. Ex
perimental results indicate a value Z) = 0.03 which is fairly 
constant for the problem under consideration. A procedure to 
solve the Eqs. (2) and (3) was described by Vielsack (1986). 
Results are shown in Fig. 2. Corresponding axes have identical 
scales. 

Qualitatively, both cases of damping lead to a similar angle-
time behavior <p(t). The corresponding characteristics exhibit 
quantitative differences. The bilinear relation in the case of 
small damping is frequently found in literature to describe 
elastoplastic structural vibrations. In contrast only large damp
ing creates realistic loops. Distances between two neighboring 
loops correspond to plastic increments. They decrease in both 
cases while increasing the number of plastic states. In addition 
the final deformed positions differ extremely with the maximum 
number of plastic states. We get <pi26) = 50 deg for D = 0.0015 
and ^(/0)= 35 deg for D = 0.03. The validity of a three-element 
unit for elastoplastic beam vibrations depends highly on the 
accurate choice of the viscous part. 

Experimental investigations are based on the same data as 
given above. A beam is clamped at a thin-walled tube with 
special arrangement and connection of strain gauges to meas
ure the moment M(t). The tube is fixed on a shaker with 
absolute displacementy{t). An opto-electronical device meas
ures the vertical and horizontal absolute displacement of the 

"Dr. -Ing. 
"Professor. 
20Institut fur Mechanik, Universitat Karlsruhe, 7500 Karlsruhe, Postfach 6980, 

Germany. 
Manuscript received by the ASME Applied Mechanics Division, June 14, 
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S> 

i D=0.03 

Fig. 2 Theoretical results 

M - n = / 2 5 / 
~JH /100 

Fig. 3 Experimental result 

moving mass. Combining these three signals by a simple geo
metrical relation yields <p(t). Eliminating time t from the par
ametric representation M=M(t) and <p = <p(t) leads to the 
experimental results M=M(<p) shown in Fig. 3. 

Correspondence to the theoretical predictions for Z> = 0.03 
is evident. Both constants k and M„ agree with their calcula
ted values. If we compare the sum <p)n) of all plastic increments 
up to n = 25 we get <pY> = 29 deg from theory and <p(25) = 30 deg 
from experiment. In contradiction to theory the loops do not 
converge for «>25. Instead of a limiting angle we observe a 
small but permanent drift. 
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BRIEF NOTES 

Thin Elastic Cylindrical Sheet Pressured Onto a Convex 
Corner 

C. Y. Wang21 

Pressure molding is an important process in the formation 
of thin-walled products. However, the final shape may not 
conform exactly to the mold due to resistance of the material. 
A previous paper (Wang 1985) studied the pressing of a two-
dimensional thin sheet into a concave corner, which models 
the initial phase of pressure molding. The present Note com
plements that source by considering the convex corner. As we 
shall see later, there are some significant differences. 

Figure 1 shows the cross-section of a sheet being pressed by 
pressure/? onto a rigid corner with angle /3<ir. Assuming the 
regions of contact are well lubricated, only normal forces act 
on the sheet. Let the coordinate axes x', y' be located at one 
of the points of separation. A local moment balance gives 

dm= -py'ds'sm 6 + (G' -px')ds' cos 0 (1) 

where s' is the arc length m = EI dd/ds' is the local moment 
per width and EI is the flexural rigidity (= (Young's modu-
lus)(width)(thickness)3/12(l - (Poisson ratio)2)). We normalize 
all lengths by (EI)mp~ m and all forces by (EI)mp2n and drop 
primes. The large deformation elastica equations are 

—2= -y sin 6 + (G-x) cos 0 (2) 

dx dv 
— = cose, -7- = sine. (3) 
ds ds 

The boundary conditions at origin are 

*(O)=.v(O) = 0(O) = ^ ( O ) = O. (4) 

The last boundary condition is due to the fact that the sheet 
is pressed flat against the mold for x' < 0 . The situation is 
similar to a flat-lying sheet of paper bent by an edge moment 
(gravity is equivalent to pressure when 6 is small). 

At the corner s = I we need 

A0 = 0,m = \(fi-r). (5) 

Equations (2)-(4) are integrated numerically with the fifth-
order Runge-Kutta-Fehlberg algorithm. The point force G is 
adjusted to satisfy Eq. (5) at the same point. A step size of As 
= 0.05 is found to be sufficient for five figure accuracy. After 
the solution is found, the point force at the corner is 

F = 2 ( c - G ) sin (0/2), (6) 

c = x(J). (7) 

The maximum moment or curvature (normalized by (£7)2/3 

) occurs at the corner 

M = r c 2 - d6 ,* 
Gc= - - ( / ) . 

ds 
(8) 

Numerical solutions, however, become inaccurate for /3 «180 
deg or the almost flat corner. For these cases a perturbation 
method is used. We set e = ( T - / 3 ) 2~ and 

s = et, d = e 4>, x=e£,y = e ij, G = eg, l = e\. (9) 

21Department of Mathematics, Michigan State University, East Lansing, MI 
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k--* 

Fig. 1 The coordinate system 

0° 60" 120° 180° 

Fig. 2 The reactive force G, distance to corner c, and free length I 

Fig. 3 The reactive force F and the maximum moment M at the corner 

The governing equations are linearized to 

*'(o=g-f. rw=i,i»'(o=* do) 
with the boundary conditions 

0(0) = 4>' (0) = «0) = r,(0) = 0, ,(X) = 0, 0(X) = - 1. (11) 

Without going into the details the approximate solutions are 

C = /=£X=[12(7T- |S) ] 1 

G = eg = - [ 1 2 ( T T - 13)]' 

(12) 

(13) 
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BRIEF NOTES 

(El/ft) -.1 

Fig. 4 Pressing onto a right corner. Values are for (plp0). 

F=-[12(r-(3)]l/3smZ 

M= • (T-0) 
2/3 

(14) 

(15) 

The results are shown in Figs. 2 and 3. Our approximate so
lutions are fairly accurate for 120 deg </3<180 deg. Notice 
that the corner force F reaches a maximum near /3 = 119.75 
deg. When j3 = 0, the sheet is pressed into a hairpin loop. We 
find G = 0.8377, M = 2.1054, c = 3.0541, I = 3.4217. This 

loop was studied by Fleherty, Keller, and Rubinow (1972) who 
obtained a value of 3.422 for /. 

Although the governing equations are the same, the bound
ary conditions for the convex corner differ from those of the 
concave corner of Wang (1985). This is due to the corner 
reactive force on the sheet making the higher derivatives of 6 
discontinuous there. The results also show marked differences. 
All the parameters of the convex corner case are bounded while 
forces, and moments become infinite for the acute concave 
corner. 

Similarity exists for given /3. If flexural rigidity EI is constant, 
the lengths change as p~i/3 and forces change as p2n. Figure 
4 shows the effect of increasing pressure on a sheet enveloping 
a rigid right corner. It takes increasing pressure to force the 
elastic sheet to conform. In reality, the maximum moment M 
at the corner becomes large enough that a plastic hinge appears. 
Even so, it still takes infinite pressure albeit at a faster rate to 
force the sheet into a right angle. Therefore, in the design of 
pressure molds, convex corners should be rounded with a cur
vature determined by the results of this Note using the max
imum pressure available. 
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Mechanical Vibration Analysis and Computation, by D. E. 
Newland. John Wiley and Sons, New York, 1989. 583 pages. 
Price: $59.95. 

ning graduate students with some previous background in me
chanical vibrations, linear algebra, and dynamic systems 
analysis. 

REVIEWED BY ANDRES SOOM1 Theory of Wire Rope, by G. A. Costello. Springer-Verlag, 
New York, 1990. 106 pages. Price: $59.00. 

This book is a fine addition to currently available vibration 
texts. It covers linear vibrations in considerable detail and 
makes appropriate use of matrix methods and computational 
techniques. 

The first chapter is devoted to describing the relation between 
the impulse and frequency response of a single-degree-of-free-
dom oscillator. The next two chapters emphasize frequency 
response characteristics of multi-degree-of-freedom systems 
and include a section on damping measures. 

Matrix methods are introduced in the fourth chapter and 
are related to natural frequencies and mode shapes in Chapter 
5, which includes a good discussion of complex modes. Sin
gular and defective matrices are covered in Chapter 6. The 
next four chapters combine numerical methods and general 
response functions for response calculations. Chapter 11, which 
deals with systems with symmetric matrices, also introduces 
Lagrange's equations. 

Two chapters are devoted to continuous systems. The first 
chapter emphasizes longitudinal vibrations of elastic rods and 
the second transverse vibrations of beams and plates. The book 
concludes with a chapter on parametric and nonlinear vibra
tions which includes solutions of the Mathieu equations and 
the Duffing equations, along with discussion of stability, jump 
phenomena internal resonances, a brief mention of chaotic 
vibration, and approximate methods for finding periodic re
sponses. 

The book is very well written and is rich with examples that 
illustrate fundamental concepts, computational issues, and ap
plications of the material to both simple and sophisticated 
practical vibration problems. 

Although the material presented is self-contained, the book 
would be most suitable for advanced undergraduate or begin-

REVIEWED BY C. W. BERT2 

For a very long time, there has been a great need for a 
monograph such as this. This is especially true since wire rope 
has been used since the days of Babylon (700 BC). Although 
there have been some users manuals and numerous technical 
papers on the subject, to the best of the reviewer's knowledge, 
this is the first monograph devoted solely to wire rope. 

In a brief introductory chapter, the reader is introduced to 
the components and construction of wire rope. This is followed 
by a chapter on the equilibrium of a single curved wire, as 
presented in A. E. H. Love's treatise on elasticity. Chapter 3 
discusses the static response of a strand consisting of a straight 
center wire and multiple helical wires. This includes the ge
ometry involved and the response to axial and bending loads, 
multilayered strands, and detailed calculation of bending and 
contact stresses. 

In Chapter 4 ropes of complicated cross-sections are ana
lyzed for static response. Chapter 5 covers frictional effects 
and the effective length of broken wires. Chapter 6 is devoted 
to testing, including axial testing, size effects, and fatigue life. 
Chapter 7 discusses and analyzes the failure phenomenon 
known as "birdcaging," which is peculiar to wire rope. Rope 
rotation is treated in Chapter 8. The monograph is concluded 
with an extensive list of references and bibliography as well as 
an ample subject index. 

In summary, the book fills very ably a need for a concise 
treatment of the mechanics of wire rope under static and fatigue 
loading. This monograph should be in the libraries of every 
mechanical engineering and manufacturing concern having any 
use for wire rope. It also should be of great interest to applied 
mechanicians in general. 
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